
308 PROOF EXAMPLES

JOSH SWANSON

Abstract. This document contains some example proofs. It attempts to provide examples
which (1) allow you to separate “the idea” behind a proof from the proof itself and (2) allow
you to coherently explain that idea rigorously. Most propositions are significantly more
advanced and lengthy than you would be asked to prove on an exam.

1. Chapter 1: Linear equations, echelon forms

Theorem 1. A linear system with (at least) two solutions has infinitely many solutions.

Idea. Several possibilities.

(1) Geometrically, a linear system is the intersection of a bunch of hyperplanes, which is
itself either empty or a hyperplane, and hyperplanes have 1 or infinitely many points.
This would be hard to formalize at this stage, so let’s find another route.

(2) Taking the average of two solutions gives another solution. Weighted averages also
work.

(3) Consider echelon form systems. If they’re consistent, the number of solutions is
governed by the number of free variables—infinitely many if there’s more than one
free variable, and exactly 1 if there’s no free variables.

�

Proof. Approach (3) is fleshed out in Holt as Theorem 1.2. It’s quite clean and brief, but
it uses the machinery of Gaussian elimination, so it might be considered overcomplicated.
We’ll use approach (2), which has no prerequisites.

Suppose (x1, . . . , xn) and (y1, . . . , yn) are distinct solutions of a linear system. Using our
standard notation, the ith row for these two solutions reads

ai1x1 + · · ·+ ainxn = bi

and
ai1y1 + · · ·+ ainyn = bi.

We claim that (tx1 + (1− t)y1, . . . , txn + (1− t)yn) is also a solution of the system, for all
scalars t. Indeed, if we multiply the first equation by t, multiply the second equation by 1− t,
and add the two equations, we get

(tai1x1 + · · ·+ tainxn) + ((1− t)ai1y1 + · · ·+ (1− t)ainxn) = tbi + (1− t)bi.
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The right-hand side is just bi, and the left-hand side is

ai1(tx1 + (1− t)y1) + · · ·+ ain(txn + (1− t)yn) = bi.

This says exactly that our proposed solution (tx1 + (1− t)y1, . . . , txn + (1− t)yn) is in fact a
solution.

As we let t vary, we get infinitely many solutions—why? Since (x1, . . . , xn) and (y1, . . . , yn)
are distinct, they must differ in some coordinate, say xj 6= yj. Then txj + (1 − t)yj gives
infinitely many distinct values for the jth coordinate of our solutions, so there are infinitely
many solutions. �

Comments. This argument is much briefer in matrix notation: the heart of it is

A(tx + (1− t)y) = t(Ax) + (1− t)(Ay)

= tb + (1− t)b

= b.

�

Corollary 2. A linear system has either 0, 1, or infinitely many solutions.

Idea. Intuitively rather clear from the theorem. �

Proof. We do a proof by cases. Either there are 0 solutions or there are not 0 solutions. If
there are 0 solutions, great, we’re done. If there are not 0 solutions, there are more than
0 solutions. In this case, either there is 1 solution or there is more than 1 solution. In the
former case, we’re again done, and in the latter case, there are at least 2 solutions. In that
case, by the theorem, there are infinitely many solutions, so again, we’re done. �

Comments. With practice, this becomes quite short: “either there are 0, 1, or more than one
solutions, and in the last case there are infinitely many solutions by the theorem.” �

Proposition 3. A triangular system has exactly one solution.

Idea. Back substitution allows us to successively compute the coordinates of the solution
from right to left. �

Proof. A triangular system has the same number of variables and equations, and so is of the
form

a11x1 + a21x2 + · · ·+ an1xn = b1

a22x2 + · · ·+ an2xn = b2

. . .
...

annxn = bn

From the nth equation, we have xn = bn/ann. Note that we can divide by ann since leading
terms are by assumption non-zero. The n− 1st equation is an−1,n−1xn−1 + an,n−1xn = bn−1,
which gives xn−1 = (bn−1 − an,n−1xn)/an−1,n−1, and since xn = bn/ann, this determines the
value of xn−1 in terms of the system’s constants. Continuing in this manner, the variables
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x1, . . . , xn are each forced to have a single value, so there is at most one solution. Moreover,
the nth, n− 1st, etc. equations are each satisfied in turn by these values, so they do actually
form a solution. Hence there is exactly one solution. �

Comments. A completely formal version of this argument uses “mathematical induction,”
though we will avoid such rigor in this class and allow somewhat informal “continue in this
way” arguments. In this particular case, I stopped after the n− 1st equation since the later
cases are essentially no more complex than that case. Stopping after the nth equation makes
it less clear to me that you really understand the argument, and your rough goal when writing
your own proofs is to convince me you know what you’re talking about. �

Proposition 4. If S can be obtained from T by a sequence of elementary row operations,
then T can be obtained from S by a sequence of elementary row operations.

Idea. Each ERO can be undone; to get from T to S by ERO’s, do the ERO’s you used from
S to T but in the opposite order and reversing each one. �

Proof. First suppose S is obtained from T by a single ERO. We have three cases:

(1) The ERO interchanges row i and j, i.e. Ri ⇔ Rj. Apply this ERO again to undo it.
(2) The ERO scales row i by c 6= 0, i.e. cRi ⇒ Ri. Divide by c to undo it, i.e. apply

(1/c)Ri ⇒ Ri.
(3) The ERO adds c times row j to row i, i.e. Ri + cRj ⇒ Ri. Subtract c times row j

from row i to undo it, i.e. apply Ri − cRj ⇒ Ri.

Now suppose that S is obtained from T by a sequence of ERO’s, resulting in T = T0, T1, . . . , Tk =
S. Since Ti is obtained from Ti−1 by an ERO, the above reasoning says that Ti−1 can be
obtained from Ti by an ERO. Hence we can successively go from S = Tk to Tk−1 to · · · to T1

to T0 by ERO’s. �

Comments. Cases (1)-(3) above could have been written more formally. We could do (3) as
follows. Let Sk denote the kth row of S and Tk the kth row of T . In case (3), by definition
Ti = Si + cSj and Tk = Sk for i 6= k. Applying the suggested operation results in a matrix
R with Ri = Ti − cTj and Rk = Tk for k 6= i. But then Rk = Tk = Sk for k 6= i and
Ri = Ti − cTj = (Si + cSj)− cSj = Si, so R = S. This is a very clear argument, though it’s
also quite lengthy, and I at least am entirely convinced by the shorter, less detailed version
above. �

Theorem 5. Suppose a linear system is in echelon form. Having chosen particular values
for each non-leading variable, there is a unique solution of the system with those values for
those non-leading variables.

Moreover, in every solution, a leading variable xj is a sum of constants (depending only on
the system) times either a non-leading variable xi with i > j or some constant bk from the
right-hand side of one of the linear system’s equations.
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Idea. Back substitution continues to allow us to successively compute the coordinates of the
solution from right to left, just with a bit more freedom coming from non-leading variables
because of the “stair step” pattern of echelon form. �

Proof. Say there are n variables. Suppose throughout that we’ve fixed values for the non-
leading variables. We must show that there are unique values for the leading variables which
yield a solution of the system. We’ll compute them right to left.

If xn is a leading variable, it must be so in the bottom-most equation, which is then of the
form amnxn = bm for amn 6= 0. Since amn 6= 0, this forces xn to have a unique value, namely
bm/amn. On the other hand, if xn is not a leading variable, we’ve already fixed its value. In
either case, there is a unique value of xn.

Now suppose we’ve found unique values of the rightmost p variables xn, xn−1, . . . , xn−p+1

which satisfy the equations whose leading variable is one of xn, . . . , xn−p+1. If xp is not a
leading variable, we’ve again already fixed its value, and we can safely say the rightmost p+ 1
variables xn, . . . , xn−p have unique values which satisfy the equations whose leading variable
is one of xn, . . . , xn−p. On the other hand, if xp is a leading variable, then it’s in a row of the
form

(1) ai,pxp + ai,p+1xp+1 + · · ·+ ai,nxn = bi.

Since xp+1, . . . , xn have already been fixed and ai,p 6= 0, we can solve equation (1) for xp

uniquely, and again we can extend to the p + 1 case. Contining in this manner, eventually all
variables will have been processed, at which point there is a unique value of the n variables
xn, . . . , x1 which satisfy the equations.

In the above procedure, leading variables depended only on the value of later variables—see
equation (1). The rightmost leading variable then depends only on later variables, which
must be non-leading variables. The next leading variable to its left similarly depends only on
later variables, including free variables and the rightmost leading variable. Replacing the
rightmost leading variable with free variables, the next leading variable also depends only on
free variables to its right. Continuing in this way gives the second claim. �

Comments. In the triangular system variant of this proposition, we were able to write out
the procedure for just the last two rows and appeal to an ability to “continue in this manner.”
Here, though, the procedure is more complex and depends on the precise location of the
pivots. To write a coherent explanation, we used a standard organizational method. We
made a series of claims involving the rightmost p variables, going through the p = 1 case
explicitly and then describing the procedure for going from the p case to the p + 1 case in
general. Applying it repeatedly gives us the 1, 2, 3, . . . cases of our claim, which is really just
an algorithmic form of induction. �

Theorem 6. Given just the solution set of a homogeneous linear system with m equations in
n variables whose augmented matrix is in reduced row echelon form, one can compute the
underlying linear system.

Idea. The non-pivot variables can be used as free variables and the pivot variables can be
computed in terms of the free variables, which abstractly gives the entire solution set. To
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identify the pivots from the solutions, roughly note that the free variables can be completely
arbitrary as we range over all solutions, but the pivot variables cannot be so arbitrary.
Compute the remaining entries by plugging in 0 for every free variable but one and examining
the resulting solutions. The details of this proof are somewhat technical. �

Proof. The linear system is homogeneous, so the rightmost column of its augmented matrix
is zero. We may delete this column, so every column of the matrix corresponds to a variable
in the system, including the new rightmost column. If the matrix has zero rows, remove the
corresponding trivial equations (all of the form 0 = 0, so the solutions are unaffected) from
the linear system in what follows. In this way we may assume the linear system is in echelon
form and the preceding theorem may be applied to it.

Suppose i1, . . . , ik are the columns in which pivots do not occur. The variables xi1 , · · · , xik

are free variables which can be chosen completely arbitrarily. That is, for any choice of values
for these k variables, there is a unique solution to the system with those values in those
variables, by the preceding theorem. If we choose values for only some of these free variables,
there are still solutions, though they are no longer unique.

We now identify pivots and free variables by working our way right to left. If the rightmost
column contains a pivot, that pivot’s row is of the form (0, . . . , 0, 1), which corresponds to
the equation xn = 0, and in particular any solution whatsoever has nth coordinate 0. On the
other hand, if the rightmost column does not contain a pivot, then xn is a free variable, so in
particular there is some solution with xn = 1. Hence we can detect a pivot in the rightmost
column by looking for solutions with xn = 1.

Supposing we can identify the pivots among the last p variables xn−p+1, . . . , xn (i.e. in the
rightmost p columns), we can determine if the next variable xn−p is a pivot as follows. Set all
the free variables amongst the last p variables to zero and look for solutions with xn−p = 1.
There are two cases:

• If xn−p is a free variable, then there will be a solution of this form.
• Suppose xn−p is a pivot. We’re considering solutions where the free variables among

the last p variables are 0. By the preceding theorem, a pivot variable among the last
p variables is a sum of the free variables to its right, which are all 0, so all of the last
p variables must be 0 in such a solution. By the same reasoning, xn−p must also be
zero, so there is no solution of the suggested form.

Having now identified the pivots among the last p+ 1 variables, we repeat this process until
we have identified all the pivots and free variables. The number of non-zero rows is equal to
the number of pivots, so we know the number of zero rows, which gives us the location (both
row and column) of each pivot. All that remains is to compute the entries to the right of
each pivot. For that, focus on a particular pivot variable xi which is in a row of the form
(0, . . . , 0, 1, aj,i+1, . . . , aj,n). The corresponding equation for this row is

(2) xi = −aj,i+1xi+1 − · · · − aj,nxn.

We must compute aj,k for i + 1 ≤ k ≤ n in terms of the solution set. Note that if xk is a
pivot, then aj,k = 0 since position (j, k) is above the location of the pivot xk. Hence we can
restrict our attention to k for which xk is a free variable. Moreover, all the non-zero terms
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on the right-hand side of equation (2) involve free variables. Now consider solutions where
all the (free) variables on the right-hand side of (2) are zero except for xk, which is 1. The
equation is then of the form xi = −aj,k, so we can read off aj,k from the ith coordinate of
such a solution. �

Comments. I’ve repeatedly made claims without giving all the details. These claims are
meant to be very specific and checkable. Some examples:

• “Note that if xk is a pivot, then aj,k = 0 since position (j, k) is above the location of
the pivot xk.”
• “the number of zero rows . . . gives us the location (both row and column) of each

pivot”

In the first case, justifying this “geometrically obvious” statement would take a line or two
and would mostly be a distraction. In the second case, I don’t actually say how to compute
the pivot locations from the given data. In both cases the key point is that I could tell you
the missing details if you asked me, but I’ve decided they are not worth writing down. Your
proofs will probably be heavier on details than mine, but sometimes a lack of detail actually
makes for a clearer proof. For instance, sometimes several algebraic steps can be combined
into one without sacrificing clarity.

(I’ve included this theorem despite the proof’s relative complexity since Holt does not
include a proof and I was not happy with any of the proofs I found in other sources. The
argument is my own, though it can’t possibly be new. None of the proofs I found worked
with the underlying solution set, which is what I was after.) �

Corollary 7. Every matrix is equivalent (i.e. obtainable by a sequence of elementary row
operations) to a unique matrix in reduced row echelon form.

Idea. The solutions of the underlying linear system determine the reduced row echelon
form, these solutions are preserved by ERO’s, and they determine the linear systems by the
theorem. �

Proof. First apply Gauss–Jordan elimination to obtain a reduced row echelon form matrix
M of the suggested form. Suppose some sequence of elementary row operations results in
another reduced row echelon form matrix M ′. We must show M = M ′.

Thinking of matrices M and M ′ as homogeneous linear systems, their solutions are preserved
by elementary row operations, so M and M ′ have the same solution set. By the theorem, the
linear systems are equal, so M = M ′. �

Remark 8. Theorem 6 is actually rather powerful. It can be used to prove the following
statements, which we’ll get to in more detail later:

• Every matrix has a pair of numbers associated to it called its rank and its nullity.
In the present context, the nullity is the number of free variables coming from the
reduced row echelon form of the matrix and the rank is the number of pivots. Hence
the number of variables is equal to the rank plus the nullity.
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• Given a homogeneous system, you can scale its equations and add them to get new
equations which still must be zero for any solution. Consider the set of all equations
obtainable in this way for a particular homogeneous system coming from a matrix M .
This set is (essentially) the row space of M . Now also consider the set of solutions of
the homogeneous system, which is called the null space of M . In fact, two matrices
have the same null space if and only if they have the same row space.
• There is a “duality” between solutions of homogeneous systems and the equations

of homogeneous systems themselves. The act of computing the solutions of a homo-
geneous system actually computes the “orthogonal complement” to the row space.
This can be reversed: one can obtain a system of equations from the orthogonal
complement whose solutions are precisely the row space of the original system.
• Reduced row echelon form matrices “parameterize” both the space of solution sets

of systems of equations and the space of row spaces of matrices. This insight is
used in the “Schubert calculus” to give geometric structure to sets of hyperplanes
called “Schubert varieties.” This is the starting point of an old but very active area
of mathematical research.
• (Everything said so far also works over arbitrary fields. In particular, the duality

above gives the usual symmetry of q-binomial coefficients. The one strange thing is
that the row space and its orthogonal complement no longer have trivial intersection.)
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