
Math 308 M Midterm 2 Spring 2015

Your Name Student ID #

• Do not open this exam until you are told to begin. You will have 50 minutes for the exam.

• Check that you have a complete exam. There are 5 questions for a total of 54 points.

• You are allowed to have one handwritten note sheet. Only basic non-graphing scientific
calculators are allowed, though you should not need one.

• Cheating will result in a zero and be reported to the Dean’s Academic Conduct Committee.

• Show all your work. Unless explicitly stated otherwise in a particular question, if there is
no work supporting your answer, you will not receive credit for the problem. If you need more
space to answer a question, continue on the back of the page, and indicate that you have done
so.

Question Points Score

1 18

2 11

3 8

4 9

5 8

Total: 54
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1. Multiple choice and short answer. For these questions, you are not required to show any
work.

(a) (2 points) Every subspace is the row space of some matrix.
√

True © False

Solution: Every subspace has a basis, and we can form a matrix whose rows are that
basis.

(b) (2 points) If A and B are invertible n× n matrices, then (A + B)−1 = A−1 + B−1.

© True
√

False

Solution: Take A = I, B = −I, so A + B = 0 is not invertible, yet A−1 + B−1 =
I +−I = 0.

(c) (2 points) If A is m× n, then nullity(A)− nullity(AT ) = n−m.
√

True © False

Solution: From rank-nullity applied to A, rank(A) + nullity(A) = n, and applied
to AT , rank(AT ) + nullity(AT ) = m. Note rank(A) = dim col(A) = dim row(AT ) =
rank(AT ). Subtracting these two equations now gives the suggested equation.

(d) (4 points) Let A,B be n× n matrices, let u,v ∈ Rn, and let s, t be scalars. Which of the
following are always true? (Check all that apply.)

© A(su + tv) = sAu + tAv. © (AB)2 = A2B2.
© (A + B)2 = A2 + 2AB + B2. © A0 = 0.
© A2 = A implies A(A− I) = 0, so either A = I or A = 0.

Solution: The first is linearity; counterexamples to the second are easy to find; the
left-hand side of the third is A2 + AB + BA + B2, so we need AB = BA, which the
previous counterexample also works on; the fourth is the s = t = 0,u = v = 0 case of
the first; counterexamples to the fifth are also easy to find.

(e) (4 points) Give an example of two subspaces S1 and S2 of R4 each of dimension 2 but
where the only vector belonging to both S1 and S2 is 0.

Solution: There are many examples, but the simplest is probably S1 = span{e1, e2},
S2 = span{e3, e4}.

(f) (4 points) Give an example of two linear functions T : Rn → Rm and U : Rm → R` such
that T is one-to-one, rangeT = kerU , and U is onto. Hint: In your example, you’ll find
m = n + `.

Solution: There are again many examples. A simple one with geometric motivation:
let T map R1 to the x-axis in R2; let U project points in R2 onto the y-axis. The kernel
of U is evidently the x-axis, which is the range of T , T is one-to-one, and U is onto.
In coordinates, T (x) = (x, 0), U(x, y) = y. This is a “short exact sequence”.
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2. Let A be the following 3× 5 matrix. Its reduced echelon form B is provided.

A =

 1 1 7 0 0
3 1 15 6 0
0 2 6 3 9

 ∼
 1 0 4 0 −3

0 1 3 0 3
0 0 0 1 1

 = B.

(a) (3 points) Compute rank(A), dim row(A), dim col(A), and nullity(A).

Solution: The first three are all the rank, which is the number of pivots in B, which
is 3. The nullity is the number of columns without pivots in B, which is 2.

(b) (8 points) Find bases for row(A), col(A), and null(A).

Solution: A basis for row(A) is given by reading off the non-zero rows of B,


1
0
4
0
−3

 ,


0
1
3
0
3

 ,


0
0
0
1
1


 .

A basis for col(A) is given by reading off the columns of A in which a pivot appears in
B, 

1
3
0

 ,

1
1
2

 ,

0
6
3

 .

A basis for null(A) is given by reading off the vectors involved in the vector form of
the general solution of Ax = 0. Here that general solution is

x =


x1

x2

x3

x4

x5

 =


−4s1 + 3s2
−3s1 − 3s2

s1
−s2
s2

 = s1


−4
−3
1
0
0

+ s2


3
−3
0
−1
1

 ,

so a basis is given by 


−4
−3
1
0
0

 ,


3
−3
0
−1
1


 .
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3. Let A be the following 3× 3 matrix:

A =

1 4 −3
1 3 3
0 0 1

 .

(a) (5 points) Compute A−1.

Solution: We can do this by forming the augmented matrix [A|I] and row reducing.
The result (if A is invertible) will be [I|A−1]. And indeed,

[A|I] =

 1 4 −3 1 0 0
1 3 3 0 1 0
0 0 1 0 0 1

 ∼
 1 0 0 −3 4 −21

0 1 0 1 −1 6
0 0 1 0 0 1

 = [I|A−1].

(b) (3 points) Show that AT is invertible, with (AT )−1 = (A−1)T .

Solution: We can do this by directly multiplying out AT (A−1)T , which will result in
I. We can also repeat (a) with AT . On the other hand, we can also show this is true
abstractly in general with very little effort:

AT (A−1)T = (A−1A)T = IT = I.
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4. Fix a 2× 2 matrix A. Let Q : R2 → R be the function given by

Q(x) := xTAx.

(a) (3 points) If A =

[
a b
b c

]
and x =

[
x
y

]
, show directly that

Q(x) = ax2 + 2bxy + cy2.

Solution: We compute

Q(x) = xTAx =
[
x y

] [a b
b c

] [
x
y

]
=
[
x y

] [ax + by
bx + cy

]
=
[
x(ax + by) + y(bx + cy)

]
= ax2 + 2bxy + cy2.

(b) (3 points) Show that Q(sx) = s2Q(x) for all scalars s.

Solution: We compute

Q(sx) = (sx)TA(sx) = sxTAsx = s2xTAx = s2Q(x).

Note: if you deduce this from the formula in (a), you need to handle the case when A
is not symmetric separately.

(c) (3 points) Find a matrix A and vectors x1,x2 ∈ R2 such that Q(x1 +x2) 6= Q(x1)+Q(x2).

Solution: Using the formula from (a), we can choose A = I to get Q(x) = x2 + y2.
This is not linear for many reasons, but an explicit one is that

Q(e1 + e1) = 22 = 4 6= 2 = 1 + 1 = Q(e1) + Q(e1).
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5. In this question, you are given a proof and are asked to provide justification for individual steps.
Let T : Rn → Rm be a linear transformation throughout.

Proposition. If T is onto, then there is a linear transformation U : Rm → Rn such that

T (U(x)) = x for all x ∈ Rm.

Proof. Pick y1, . . . ,ym as in (a), so T (yi) = ei. Pick U as in (b), so U(ei) = yi. Then

T (U(ei)) = T (yi) = ei.

By (c), T (U(x)) = x for all x ∈ Rm.

Hint: Parts (a)-(c) are independent of each other.

(a) (1 point) Show that if T is onto, then there are y1, . . . ,ym ∈ Rn such that T (yi) = ei.

Solution: Since T is onto, for each ei, there is some yi such that T (yi) = ei by
definition.

(b) (3 points) Show that, given y1, . . . ,ym in Rn, there is some linear transformation U : Rm →
Rn with

U(ei) = yi for i = 1, . . . ,m.

Solution: Let B be n ×m with columns y1, . . . ,ym. Then Bei = yi, so U(x) := Bx
has U(ei) = yi and U is linear.
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(c) (4 points) Show that if U : Rm → Rn is linear and T (U(ei)) = ei for all ei ∈ Rm, then
T (U(x)) = x for all x ∈ Rm.

Solution: If A is the matrix of T and B is the matrix of U , then we have ABei = ei,
so the ith column of AB is ei, and AB is m×m, so AB = I. Hence T (U(x)) = Ix = x.

Alternatively, for each x there are constants for which x = c1e1 + . . . + cmem. Then

T (U(x)) = T (U(c1e1 + · · ·+ cmem))

= T (c1U(e1) + · · ·+ cmU(em))

= c1T (U(e1)) + · · ·+ cmT (U(em))

= c1e1 + · · ·+ cmem

= x.


