
Math 308 M Final Spring 2015

Your Name Student ID #

• Do not open this exam until you are told to begin. You will have 1 hour and 50 minutes for
the exam.

• Check that you have a complete exam. There are 7 questions for a total of 110 points.

• You are allowed to have one handwritten note sheet. Only basic non-graphing scientific
calculators are allowed, though you should not need one.

• Cheating will result in a zero and be reported to the Dean’s Academic Conduct Committee.

• Show all your work. Unless explicitly stated otherwise in a particular question, if there is
no work supporting your answer, you will not receive credit for the problem. If you need more
space to answer a question, continue on the back of the page, and indicate that you have done
so.

Question Points Score

1 21

2 21

3 18

4 12

5 12

6 11

7 15

Total: 110
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1. Multiple choice and short answer. For these questions, you are not required to show any
work.

(a) (2 points) There are infinitely many one-dimensional subspaces of R2.
√

True © False

Solution: Infinitely many such subspaces are given as span

{[
1
t

]}
for t ∈ R.

(b) (2 points) If A is n× n, then the reduced row echelon form of A is In.

© True
√

False

Solution: 0 is its own reduced row echelon form.

(c) (2 points) If A and B are n× n and det(AB) 6= 0, then A and B are row equivalent.
√

True © False

Solution: det(AB) = det(A) det(B) 6= 0, so A and B are invertible. Invertible square
matrices row reduce to the identity, so are row equivalent.

(d) (2 points) Let A be m× n. Then ATA is symmetric if and only if m = n. (Recall that X
is symmetric if X = XT .)

© True
√

False

Solution: (ATA)T = AT (AT )T = ATA, regardless of the size of A.

(e) (2 points) A nonsingular matrix can have 0 as an eigenvalue.

© True
√

False

Solution: A nonsingular matrix is a square matrix which is invertible. By the big
theorem, such a matrix cannot have 0 as an eigenvalue.

(f) (2 points) If S ⊂ R4 is a subspace of dimension 2, then every x ∈ R4 is in either S or S⊥.

© True
√

False

Solution: Let S = span{e1} ⊂ R2, so S⊥ = span{e2}. Then e1 + e2 is in neither S
nor S⊥.

(g) (2 points) Let A be an n×n matrix with (distinct) eigenvalues λ1, . . . , λk and eigenspaces
S1, . . . , Sk. Then dimS1 + · · ·+ dimSk ≤ n.
√

True © False

Solution: dimSi is less than or equal to the multiplicity of λi in the characteristic
polynomial of A, so adding up all of these gives at most n.

(h) (2 points) A subspace S 6= {0} can have a finite number of vectors.

© True
√

False
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Solution: Such a subspace has at least one non-zero vector, and it has all multiples
of that vector, of which there are infinitely many.

(i) (3 points) Give the definition of “subspace.”

Solution: A subspace S of Rn is a subset of Rn which contains 0 and is closed under
addition and scalar multiplication.

(j) (2 points) Give the definition of “basis.”

Solution: A basis is a linearly independent spanning set for some given subspace.
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2. Provide examples meeting the given requirements. Unlike on the midterms, you must justify
your answers on this question.

(a) (4 points) Give a 3 × 3 matrix which has π as an eigenvalue where the π-eigenspace has
dimension 3.

Solution: The only example is πI3. It clearly scales all inputs by π, so the π eigenspace
is R3 which has dimension 3.

(b) (4 points) Find A and B where det(A+B) 6= det(A) + det(B).

Solution: Almost everything is a counterexample. For instance,

det

([
1 0
1 0

]
+

[
0 −1
0 1

])
= det

[
1 −1
1 1

]
= 2

6= 0 = 0 + 0 = det

[
1 0
1 0

]
+ det

[
0 −1
0 1

]
.

(c) (5 points) Find a 3× 3 matrix A where A3 = 0 but A2 6= 0. (Hint: triangular matrices.)

Solution: The simplest example is probably

A =

0 1 0
0 0 1
0 0 0


since

A2 =

0 1 0
0 0 1
0 0 0

0 1 0
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0


A3 = A2A =

0 0 1
0 0 0
0 0 0

0 1 0
0 0 1
0 0 0

 =

0 0 0
0 0 0
0 0 0

 .
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(d) (4 points) Find a matrix whose characteristic polynomial is (1− λ)(2− λ)2(3− λ)3.

Solution: Any triangular matrix with diagonal entries 1, 2, 2, 3, 3, 3 has this property.
For instance,

det


1− λ 0 0 0 0 0

0 2− λ 0 0 0 0
0 0 2− λ 0 0 0
0 0 0 3− λ 0 0
0 0 0 0 3− λ 0
0 0 0 0 0 3− λ

 = (1− λ)(2− λ)2(3− λ)3.

(e) (4 points) Give an example of a one-to-one linear transformation T : Rn → Rm together
with another linear transformation U : Rm → Rn where U ◦ T : Rn → Rn is the identity,
i.e. U(T (x)) = x for all x ∈ Rn.

Solution: The simplest example is to let U = T be the identity on R1. Another
example is “inclusion” of R1 into R2 as the x-axis followed by “projection” of R2 onto
the x-axis, namely

T
([
x
])

:=

[
x
0

]
, U

([
x
y

])
:=
[
x
]
, so U ◦ T

([
x
])

= U

([
x
0

])
=
[
x
]
.
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3. Prove each of the following statements. Hint: each part is independent of the others unless
stated otherwise.

(a) (2 points) Let A be a square matrix. Show that A3 − I = (A− I)(A2 + A+ I).

Solution: We compute

(A− I)(A2 + A+ I) = A3 + A2 + A− A2 − A− I = A3 − I.

(b) (2 points) If u,v ∈ Rn are (column) vectors, show that u · v = uTv.

Solution: We compute

u · v =

u1...
un

 ·
v1...
vn

 = u1v1 + · · ·+ unvn =
[
u1 · · · un

] v1...
vn

 = uTv.

(c) (5 points) Show that if λ is an eigenvalue of ATA, then λ ≥ 0. (Hint: if v is an eigenvector
of ATA with eigenvalue λ, show that λ|v|2 = (ATAv)·v = (Av)·(Av) ≥ 0 using (b) twice.)

Solution: As the hint suggests, we compute

λ|v|2 = (λv) · v = (ATAv) · v
= (ATAv)Tv = vTATAv

= (Av)T (Av) = (Av) · (Av) ≥ 0.

Hence λ|v|2 ≥ 0, so since v 6= 0, we have λ ≥ 0.
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(d) (2 points) Let A and P be n × n matrices with P invertible and let λ be a scalar. Show
that PAP−1 − λI = P (A− λI)P−1

Solution: We compute

P (A− λI)P−1 = PAP−1 − λPIP−1 = PAP−1 − λI.

(e) (3 points) Let A and P be n× n matrices with P invertible. Use (d) to show that A and
PAP−1 have the same characteristic polynomial.

Solution: Using (d), we see

det(PAP−1−λI) = det(P (A−λI)P−1) = det(P ) det(A−λI) det(P )−1 = det(A−λI).

(f) (4 points) Suppose X and Y are square matrices which commute, meaning XY = Y X.
Show that if u ∈ null(X), then Y u ∈ null(X).

Solution: We compute

X(Y u) = (XY )u = (Y X)u = Y (Xu) = Y 0 = 0.
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4. Let

A :=

1 2 3
4 5 6
7 8 9

 =

 1 0 0
4 1 0
−3 0 1

1 2 3
0 −3 −6
0 0 0

 .
(a) (4 points) Compute det(A). Is A invertible?

Solution: The determinant of the product is the product of the determinants. The
determinant of a triangular matrix is the product of the entries on the diagonal. So,
the determinant is (13)(1 ·−3 ·0) = 0. Since the determinant is zero, A is not invertible.

(b) (4 points) Let L be the lower triangular matrix above and let U be the upper triangular
matrix, so A = LU . Show that null(A) = null(U). (Hint: L is invertible.)

Solution: Note that L is invertible (for instance, it has determinant 1). Then Ax = 0
iff LUx = 0 iff L−1LUx = L−10, which says Ux = 0.

(c) (4 points) Show that U is an echelon form of A. Find a basis for null(A).

Solution: Since null(U) = null(A) and U and A have the same size, they have the
same reduced echelon form by the proof examples document. Alternatively, it is easy
to row reduce A to U .

We can find a basis for null(A) by finding a basis for null(U). We compute

U ∼

1 0 −1
0 1 2
0 0 0


so reading off the general solution gives

x =

x1x2
x3

 =

 s
−2s
s

 = s

 1
−2
1

 ,
giving basis 

 1
−2
1

 .



Math 308 M, Spring 2015 Final Page 8 of 12

5. (a) (5 points) Let A be a 2× 2 matrix where

A

[
1
1

]
=

[
2
4

]
, A

[
1
−1

]
=

[
2
√

2
0

]
.

What is A?

Solution: We compute

A

[
1
0

]
=

1

2
A

([
1
1

]
+

[
1
−1

])
=

1

2

([
2
4

]
+

[
2
√

2
0

])
=

[
1 +
√

2
2

]
.

A

[
0
1

]
=

1

2
A

([
1
1

]
−
[

1
−1

])
=

1

2

([
2
4

]
−
[
2
√

2
0

])
=

[
1−
√

2
2

]
.

Hence

A =

[
1 +
√

2 1−
√

2
2 2

]
.

(b) (3 points) Find bases B and C of R2 such that the matrix A from (a) is the change of basis
matrix from B to C. (If you did not solve (a), you may replace A with your own 2 × 2
matrix.)

Solution: An invertible matrix can always be viewed as a change of basis matrix from
the basis consisting of the columns of that matrix to the standard basis. A is clearly
invertible.

(c) (4 points) Find the change of basis matrix from the basis{[
2
4

]
,

[
2
√

2
0

]}
to the basis {[

1
1

]
,

[
1
−1

]}
.

Solution: From class, this matrix is[
1 1
1 −1

]−1 [
2 2
√

2
4 0

]
=

[
3
√

2

−1
√

2

]
.



Math 308 M, Spring 2015 Final Page 9 of 12

6. Let

A =


0 0 −2 −1
1 1 6 5
2 0 4 1
0 0 0 1

 .
(a) (4 points) Compute the characteristic polynomial of A directly. (Hint: the eigenvalues of

A are 1 and 2.)

Solution: We expand A − λI along the second column and expand along the third
row afterwards:

det(A− λI) = det


−λ 0 −2 −1
1 1− λ 6 5
2 0 4− λ 1
0 0 0 1− λ


= (1− λ) det

−λ −2 −1
2 4− λ 1
0 0 1− λ


= (1− λ)(1− λ)(−λ(4− λ) + 4)

= (1− λ)2(λ2 − 4λ+ 4) = (1− λ)2(2− λ)2.

(b) (5 points) Compute a basis for the eigenspace of 1.

Solution: We must compute (A− I). We row reduce as usual:

A− I =


−1 0 −2 −1
1 0 6 5
2 0 3 1
0 0 0 0

 ∼


1 0 0 −1
0 0 1 1
0 0 0 0
0 0 0 0


which gives solutions

x =


x1
x2
x3
x4

 =


s2
s1
−s2
s2

 = s1


0
1
0
0

+ s2


1
0
−1
1


so we have a basis 


0
1
0
0

 ,


1
0
−1
1


 .

(c) (2 points) Let x =


1
1
−1
1

. Compute A100x.
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Solution: Clearly x is in the 1-eigenspace. Hence Ax = x, so A100x = x.
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7. The following is a basis for R3: 
4

2
1

 ,
1

1
0

 ,
3

5
5

 .

(a) (5 points) Find an orthogonal basis {v1,v2,v3} for R3 where v1 =

1
1
0

.

Solution: We apply Gram-Schmidt after reordering the above vectors; say they are
s2, s1, s3, respectively. Now

v1 = s1

v2 = s2 − projv1
s2

v3 = s3 − projv1
s3 − projv2

s3

which works out to be

v1 =

1
1
0


v2 =

4
2
1

− 6

2

1
1
0

 =

 1
−1
1


v3 =

3
5
5

− 8

2

1
1
0

− 3

3

 1
−1
1

 =

−2
2
4

 .

(b) (3 points) Find an orthonormal basis {u1,u2,u3} for R3 where u1 · v1 = |u1||v1| where
v1 is as in (a).

Solution: Simply divide each vector from (a) by its magnitude:

u1 =
v1

|v1|
=

1√
2

1
1
0

 u2 =
v2

|v2|
=

1√
3

 1
−1
1

 u3 =
v3

|v3|
=

1√
24

−2
2
4

 .
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(c) (3 points) Let S be span{e1, e3, e5} ⊂ R5 and let y =


3
1
4
1
5

. Compute projS y.

Solution: Using the formula from class (or geometric intuition) immediately gives

projS y =


3
0
4
0
5

 .

(d) (4 points) Find a least squares solution x̂ to the system Ax = y given by
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

x =


3
1
4
1
5

 .
Are there any other least squares solutions?

Solution: We can use either the original definition of least squares solutions or we can
solve the normal equations in this case since we’ve computed ŷ.

The original definition: solve Ax = ŷ. The columns of A are linearly independent, so
there is at most one solution, and ŷ = 3e1 + 4e3 + 5e5, giving a unique solution of

x̂ =

3
4
5

 .
Normal equations: solve ATAx = ATy, so solve1 0 0

0 1 0
0 0 1

x =

3
4
5

 ,
which gives the same answer as before as well as uniqueness.


