Quiz 3

In these problems, check all that apply.

1. Consider the differential equation

$$\frac{1}{2}y'' + y' + y = 1.$$

This equation...

is linear	\bigcirc is non-linear
is first order	is second order
·	/ •

 \bigcirc is homogeneous $\sqrt{}$ is non-homogeneous

 $\sqrt{}$ has constant coefficients \bigcirc has non-constant coefficients \bigcirc is an initial value problem

The characteristic equation...

 \bigcirc has distinct real roots \bigcirc has repeated roots \bigvee has complex roots \bigcirc does not make sense

The general solution to this equation can be found using...

$$\sqrt{}$$
 reduction of order, with $y_1 = \underline{} e^{1\pm i}$

 $\sqrt{}$ variation of parameters, with $y_1 = \underline{\qquad} e^{1 \pm i}$, $y_2 = \underline{\qquad} e^{1 \mp i}$

 $\sqrt{\text{ undetermined coefficients, with } Y = \underline{A = Ae^{0t}}$

- none of the above
- 2. Consider

$$y'' - \frac{2}{t^2}y = 0,$$
 $y(1) = 1, y'(1) = 2,$ $t > 0.$

This equation...

is linear	\bigcirc is non-linear
is first order	is second order
is homogeneous	$\sqrt{}$ is non-homogeneou

 \bigcirc has constant coefficients \checkmark has non-constant coefficients

 $\sqrt{}$ is an initial value problem

The characteristic equation...

$$\bigcirc$$
 has distinct real roots \bigcirc has repeated roots \bigcirc has complex roots \checkmark does not make sense

The solution to this problem can be found using...

$$\sqrt{\text{ reduction of order, with } y_1 = t^2}$$

$$\bigcirc$$
 variation of parameters, with $y_1 = t^3$, $y_2 = t^4$

$$\sqrt{\text{undetermined coefficients, with } Y(t) = At^2}$$

none of the above