3.3 Optimizing Functions of Several Variables3.4 Lagrange Multipliers

Prof. Tesler

Math 20C Fall 2018

Optimizing y = f(x)

• In Math 20A, we found the minimum and maximum of y = f(x) by using derivatives.

• First derivative:

Solve for points where f'(x) = 0. Each such point is called a *critical point*.

• Second derivative:

For each critical point x = a, check the sign of f''(a):

- f''(a) > 0: The value y = f(a) is a local minimum.
- f''(a) < 0: The value y = f(a) is a local maximum.
- f''(a) = 0: The test is inconclusive.
- Also may need to check points where f(x) is defined but the derivatives aren't, as well as boundary points.
- We will generalize this to functions z = f(x, y).

Local extrema (= maxima or minima)

Consider a function z = f(x, y). The point (x, y) = (a, b) is a

- *local maximum* when $f(x, y) \leq f(a, b)$ for all (x, y) in a small disk (filled-in circle) around (a, b);
- *global maximum* (a.k.a. *absolute maximum*) when $f(x, y) \leq f(a, b)$ for all (x, y);
- *local minimum* and *global minimum* are similar with $f(x, y) \ge f(a, b)$.
- A, C, E are local maxima (plural of maximum)
 E is the global maximum
 - D, G are local minima
 - *G* is the global minimum
- B is maximum in the red cross-section but minimum in the purple cross-section! It's called a saddle point.

G

D

F

А

Critical points on a contour map

Classify each point *P*, *Q*, *R*, *S* as local maximum or minimum, saddle point, or none.

Isolated max/min usually have small closed curves around them.
 Values decrease towards P, so P is a local minimum.
 Values increase towards Q, so Q is a local maximum.

Critical points on a contour map

- The crossing contours have the same value, 1. (If they have different values, the function is undefined at that point.)
- Here, the crossing contours give four regions around *R*.
- The function has
 - a local min. at *R* on lines with positive slope (goes from >1 to 1 to >1)
 - a local max. at *R* on lines with neg. slope (goes from <1 to 1 to <1).
- Thus, *R* is a saddle point.

Critical points on a contour map

• S is a regular point. Its level curve ≈ 8 is implied but not shown. The values are bigger on one side and smaller on the other.

P: local min *Q*: local max *R*: saddle point *S*: none

Contour map of z = y/x: crossing lines

• Contours of z = y/x are diagonal lines: z = c along y = cx.

- Contours cross at (0, 0) and have different values there.
- Function z = y/x is undefined at (0, 0).

Contour map of z = sin(y)

Minimum and maximum form curves, not just isolated points

• Contours of z = f(x, y) = sin(y) are horizontal lines y = arcsin(z)

- Maximum at $y = (2k + \frac{1}{2})\pi$ for all integers k Minimum at $y = (2k - \frac{1}{2})\pi$
- These are curves, not isolated points enclosed in contours.

Finding the minimum/maximum values of z = f(x, y)

- The tangent plane is horizontal at a local minimum or maximum: $f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) - z = 0.$ The normal vector $\langle f_x(a,b), f_y(a,b), -1 \rangle \parallel z$ -axis when $f_x(a,b) = f_y(a,b) = 0$, or $\nabla f(a,b) = \vec{0}$.
- At points where $\nabla f \neq \vec{0}$, we can make f(x, y)
 - larger by moving in the direction of ∇f ;
 - smaller by moving in the direction of $-\nabla f$.
- (a,b) is a *critical point* if $\nabla f(a,b)$ is $\vec{0}$ or is undefined. These are candidates for being maximums or minimums.
- Critical points found in the same way for f(x, y, z, ...).

Completing the squares review

•
$$(x+m)^2 = x^2 + 2mx + m^2$$

• For a quadratic $x^2 + bx + c$, take half the coefficient of x:

Form the square:

$$(x+b/2)^2 = x^2 + bx + (b/2)^2$$

• Adjust the constant term: $x^2 + bx + c = (x + b/2)^2 + d$ where $d = c - (b/2)^2$

Example: $x^2 + 10x + 13$

- Take half the coefficient of *x*: 10/2 = 5
- Expand $(x+5)^2 = x^2 + 10x + 25$
- Add/subtract the necessary constant to make up the difference: $x^2 + 10x + 13 = (x + 5)^2 - 12$

For $ax^2 + bx + c$, complete the square for $a(x^2 + (b/a)x)$ and then adjust the constant.

Example: $10y^2 - 60y + 8$

•
$$10y^2 - 60y + 8 = 10(y^2 - 6y) + 8$$

•
$$y^2 - 6y = (y - 3)^2 - 9$$

•
$$10y^2 - 60y + 8 = 10(y - 3)^2 + ?$$

•
$$10(y-3)^2 = 10(y^2 - 6y + 9) = 10y^2 - 60y + 90$$

•
$$10y^2 - 60y + 8 = 10(y - 3)^2 - 82$$

Critical points

• Let
$$f(x, y) = x^2 - 2x + y^2 - 4y + 15$$

 $\nabla f = \langle 2x - 2, 2y - 4 \rangle$

• $\nabla f = \vec{0}$ at x = 1, y = 2, so (1, 2) is a critical point.

• Use
$$(x-1)^2 = x^2 - 2x + 1$$

 $(y-2)^2 = y^2 - 4y + 4$
 $f(x,y) = (x-1)^2 + (y-2)^2 + 10$

We "completed the squares": $x^2 - ax = (x - \frac{a}{2})^2 - (\frac{a}{2})^2$

• $f(x, y) \ge 10$ everywhere, with global minimum 10 at (x, y) = (1, 2).

Second derivative test for functions of two variables How to classify critical points $\nabla f(a, b) = \vec{0}$ as local minima/maxima or saddle points

Compute all points where $\nabla f(a, b) = \vec{0}$, and classify each as follows:

• Compute the *discriminant* at point (*a*, *b*):

$$D = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix} = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2$$

Determinant of "Hessian matrix" at (x, y) = (a, b)

• If D > 0 and $f_{xx} > 0$ then z = f(a, b) is a local minimum; If D > 0 and $f_{xx} < 0$ then z = f(a, b) is a local maximum; If D < 0 then f has a saddle point at (a, b);

If D = 0 then it's inconclusive; min, max, saddle, or none of these, are all possible.

Example:

$$f(x, y) = x^2 - y^2$$

Find the critical points of $f(x, y) = x^2 - y^2$ and classify them using the second derivatives test.

•
$$\nabla f = \langle 2x, -2y \rangle = \vec{0} \text{ at } (x, y) = (0, 0).$$

- The x = 0 cross-section is $f(0, y) = -y^2 \le 0$. The y = 0 cross-section is $f(x, 0) = x^2 \ge 0$. It is neither a minimum nor a maximum.
- $f_{xx}(x, y) = 2$ and $f_{xx}(0, 0) = 2$ $f_{yy}(x, y) = -2$ and $f_{yy}(0, 0) = -2$ $f_{xy}(x, y) = 0$ and $f_{xy}(0, 0) = 0$
 - $D = f_{xx}(0,0) f_{yy}(0,0) (f_{xy}(0,0))^2$ = (2)(-2) - 0² = -4 < 0 so (0,0) is a saddle point

Example:

- $\nabla f = \langle 2x, -2y \rangle$ points in the direction of greatest increase of f(x, y).
- The function increases as we move towards the *x*-axis and away from the *y*-axis. At the origin, it increases or decreases depending on the direction of approach.

Example: $f(x, y) = 8y^3 + 12x^2 - 24xy$

Find the critical points of f(x, y) and classify them using the second derivatives test.

• Solve for first derivatives equal to 0:

- Critical points: (0,0) and (1,1)
- Second derivative test: $(D = f_{xx}f_{yy} (f_{xy})^2)$

Crit pt	f	$f_{xx} = 24$	$f_{yy} = 48y$	$f_{xy} = -24$	D	Туре
(0, 0)	0	24	0	-24	-576	D < 0saddle
(1,1)	—4	24	48	-24	576	$D > 0$ and $f_{xx} > 0$ local minimum

• No absolute min or max: $f(0, y) = 8y^3$ ranges over $(-\infty, \infty)$

Example: $f(x, y) = x^3 + y^3 - 3x - 3y^2 + 1$

Find the critical points of f(x, y) and classify them using the second derivatives test.

• Solve for first derivatives equal to 0:

$$f_x = 3x^2 - 3 = 0$$
 gives $x = \pm 1$
 $f_y = 3y^2 - 6y = 3y(y - 2) = 0$ gives $y = 0$ or $y = 2$

- Critical points: (-1, 0), (1, 0), (-1, 2), (1, 2)
- Second derivative test: $(D = f_{xx}f_{yy} (f_{xy})^2)$

Crit pt	f	$f_{xx} = 6x$	$f_{yy} = 6y - 6$	$f_{xy}=0$	D	Туре
(-1, 0)	3	-6	-6	0	36	$D > 0$ and $f_{xx} < 0$:
						local max
(1, 0)	-1	6	-6	0	-36	D < 0: saddle
(-1, 2)	-1	-6	6	0	-36	D < 0: saddle
(1,2)	—5	6	6	0	36	$D > 0$ and $f_{xx} > 0$:
						local min

Example:

Find the critical points of f(x, y) and classify them.

• Solve for first derivatives equal to 0:

$$f = xy - x^2y - xy^2$$

 $f_x = y - 2xy - y^2 = y(1 - 2x - y)$ gives $y = 0$ or $1 - 2x - y = 0$
 $f_y = x - x^2 - 2xy = x(1 - x - 2y)$ gives $x = 0$ or $1 - x - 2y = 0$

• Two solutions of $f_x = 0$ and two of $f_y = 0$ gives $2 \cdot 2 = 4$ combinations:

•
$$y = 0$$
 and $x = 0$ gives $(x, y) = (0, 0)$.
• $y = 0$ and $1 - x - 2y = 0$ gives $(x, y) = (1, 0)$.
• $1 - 2x - y = 0$ and $x = 0$ gives $(x, y) = (0, 1)$.
• $1 - 2x - y = 0$ and $1 - x - 2y = 0$:
The 1st equation gives $y = 1 - 2x$. Plug that into the 2nd equation:
 $0 = 1 - x - 2y = 1 - x - 2(1 - 2x) = 1 - x - 2 + 4x = 3x - 1$
so $x = \frac{1}{3}$ and $y = 1 - 2x = 1 - 2(\frac{1}{3}) = \frac{1}{3}$ gives $(x, y) = (\frac{1}{3}, \frac{1}{3})$.

Example:

f(x, y) = xy(1 - x - y)

Classify the critical points using the second derivatives test.

• Derivatives:

$$f = xy - x^{2}y - xy^{2} \qquad f_{x} = y - 2xy - y^{2} \qquad f_{y} = x - x^{2} - 2xy$$
$$f_{xx} = -2y \qquad f_{yy} = -2x$$
$$f_{xy} = f_{yx} = 1 - 2x - 2y$$

• Second derivative test: $(D = f_{xx}f_{yy} - (f_{xy})^2)$

Crit pt	f	f_{xx}	f_{yy}	f_{xy}	D	Туре
(0, 0)	0	0	0	1	-1	D < 0: saddle
(1, 0)	0	0	-2	—1	-1	D < 0: saddle
(0,1)	0	-2	0	—1	-1	D < 0: saddle
(1/3, 1/3)	1/27	-2/3	-2/3	-1/3	1/3	$D > 0$ and $f_{xx} < 0$:
						local maximum

Boundary of a region

- Consider a region $A \subset \mathbb{R}^n$.
- A point is a *boundary point* of *A* if every disk (blue) around that point contains some points in *A* and some points not in *A*.
- A point is an *interior point* of A if there is a small enough disk (pink) around it fully contained in A.
- In both A and B, the boundary points are the same: the perimeter of the hexagon.
- ∂A denotes the set of boundary points of A.

Extreme Value Theorem

• A region is *bounded* if it fits in a disk of finite radius.

- A region is *closed* if it contains all its boundary points and *open* if every point in it is an interior point.
- Open and closed are *not* opposites: e.g., \mathbb{R}^2 is open and closed! The third example above is neither open nor closed.

Extreme Value Theorem

If f(x, y) is continuous on a closed and bounded region, then it has a global maximum and a global minimum within that region.

To find these, consider the local minima/maxima of f(x, y) that are within the region, and also analyze the boundary of the region.

Find the global minimum and maximum of $f(x, y) = x^3 + y^3 - 3x - 3y^2 + 1$ in the triangle with vertices (0, 0), (0, 3), (3, 3).

Critical points inside the region

- First find and classify the critical points of *f*. (We already did.)
- f(1,2) = -5 is a local minimum and is inside the triangle.
- Ignore the other critical points since they're outside the triangle.
- Ignore the saddle points.

Find the global minimum and maximum of $f(x, y) = x^3 + y^3 - 3x - 3y^2 + 1$ in the triangle with vertices (0, 0), (0, 3), (3, 3).

Extrema on left edge: x = 0 and $0 \le y \le 3$ Set $g(y) = f(0, y) = y^3 - 3y^2 + 1$ for $0 \le y \le 3$ $g'(y) = 3y^2 - 6y = 3y(y - 2)$ g'(y) = 0 at y = 0 or 2. • We consider y = 0 and 2 by that test. We also consider boundaries y = 0 and 3. • Candidates: f(0,0) = 1f(0,2) = -3f(0,3) = 1• We could use the second derivatives test for one variable, but we'll do it another way.

Find the global minimum and maximum of $f(x, y) = x^3 + y^3 - 3x - 3y^2 + 1$ in the triangle with vertices (0, 0), (0, 3), (3, 3).

Find the global minimum and maximum of $f(x, y) = x^3 + y^3 - 3x - 3y^2 + 1$ in the triangle with vertices (0, 0), (0, 3), (3, 3).

Diagonal edge: y = x for $0 \le x \le 3$ • For $0 \leq x \leq 3$, set $p(x) = f(x, x) = 2x^3 - 3x - 3x^2 + 1$ $=2x^{3}-3x^{2}-3x+1$ $p'(x) = 6x^2 - 6x - 3$ p'(x) = 0 at $x = \frac{1 \pm \sqrt{3}}{2} \approx -0.366, 1.366$ (but $\frac{1-\sqrt{3}}{2}$ is out of range) • Also consider the boundaries x = 0 and 3. • Candidates: f(0,0) = 1f(3,3) = 19 $f\left(\frac{1+\sqrt{3}}{2},\frac{1+\sqrt{3}}{2}\right) = -1 - \frac{3\sqrt{3}}{2} \approx -3.598$

Find the global minimum and maximum of $f(x, y) = x^3 + y^3 - 3x - 3y^2 + 1$ in the triangle with vertices (0, 0), (0, 3), (3, 3).

Extrema of f(x, y) = |xy|: ∇f isn't defined everywhere

• 1st & 3rd quadrants: f(x, y) = xy and $\nabla f = \langle y, x \rangle$.

- 2nd & 4th quadrants: f(x, y) = -xy and $\nabla f = -\langle y, x \rangle$.
- Away from the axes, $\nabla f \neq \vec{0}$.
- On the axes, ∇f is undefined.
 - f(x,0) = f(0, y) = 0 on the axes.
 All points on the axes are tied for global minimum.
- On the perimeter, $f(\pm 1, y) = |y|$ and $f(x, \pm 2) = 2|x|$:
 - Minimum f = 0 at $(\pm 1, 0)$ and $(0, \pm 2)$.
 - Maximum f = 2 at (1, 2), (1, -2), (-1, 2), (-1, -2).
- The global maximum is f = 2 at
 - (1, 2), (1, -2), (-1, 2), (-1, -2).

f=0 f(1,2)=2

f=0

f(1,-2)=2

Prof. Tesler

f(-1,2)=2

f(-1,-2)=2

Extrema of f(x, y) = |xy|: ∇f isn't defined everywhere

Optional: Second derivative test for f(x, y, z, ...)Full coverage requires Linear Algebra (Math 18)

• The *Hessian matrix* of f(x, y, z) is

$$\begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial z \partial x} \\ \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial y^2} & \frac{\partial^2 f}{\partial z \partial y} \\ \frac{\partial^2 f}{\partial x \partial z} & \frac{\partial^2 f}{\partial y \partial z} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix}$$

- For $f : \mathbb{R}^n \to \mathbb{R}$, it's an $n \times n$ matrix of 2nd partial derivatives.
- For each point with $\nabla f = \vec{0}$, compute the determinants of the upper left 1×1 , 2×2 , 3×3 , ..., $n \times n$ submatrices.
 - If the $n \times n$ determinant is zero, the test is inconclusive.
 - If the determinants are all positive, it's a local minimum.
 - If signs of determinants alternate $-, +, -, \ldots$, it's a local maximum.
 - Otherwise, it's a saddle point.
 - We did 2×2 and 3×3 determinants. For 1×1 , det[x] = x. $n \times n$ determinants are covered in Linear Algebra (Math 18).

Optional example: $f(x, y, z) = x^2 + y^2 + z^2 + 2xyz + 10$

• Solve
$$\nabla f = \vec{0}$$
: $\nabla f = \langle 2x + 2yz, 2y + 2xz, 2z + 2xy \rangle = \vec{0}$
 $x = -yz, \quad y = -xz, \quad z = -xy.$

• There are five solutions (x, y, z) of $\nabla f = \vec{0}$ (work not shown): (0, 0, 0), (1, 1, -1), (-1, 1, 1), (1, -1, 1), (-1, -1, -1).

• Hessian =
$$\begin{bmatrix} 2 & 2z & 2y \\ 2z & 2 & 2x \\ 2y & 2x & 2 \end{bmatrix}$$
 At $(0,0,0)$: $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$
det $\begin{bmatrix} 2 \end{bmatrix} = 2$ det $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 4$ det $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = 8$

• All positive, so f(0, 0, 0) = 10 is a local minimum.

Optional example: $f(x, y, z) = x^2 + y^2 + z^2 + 2xyz + 10$

• Hessian =
$$\begin{bmatrix} 2 & 2z & 2y \\ 2z & 2 & 2x \\ 2y & 2x & 2 \end{bmatrix}$$
 At $(1, 1, -1)$: $\begin{bmatrix} 2 & -2 & 2 \\ -2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$
det $\begin{bmatrix} 2 \end{bmatrix} = 2$ det $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 0$ det $\begin{bmatrix} 2 & -2 & 2 \\ -2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = -32$

• Signs +, 0, -, so saddle point.

Critical points (-1, 1, 1), (1, -1, 1), (-1, -1, -1) give the same determinants 2, 0, -32 as this case, so they're also saddle points.

Optimization with a constraint

- A hiker hikes on a mountain $z = f(x, y) = \sqrt{1 x^2 y^2}$.
- Plot their trail on a topographic map: $x^2 + 4y^2 = 1$ (red ellipse).
- What is the minimum and maximum height reached, and where?
- On the ellipse, $y^2 = (1 x^2)/4$ and $-1 \le x \le 1$, so

$$z = \sqrt{1 - x^2 - (1 - x^2)/4} = \sqrt{\frac{3}{4}(1 - x^2)}$$

Minimum at $x = \pm 1$

- $y^2 = (1 (\pm 1)^2)/4 = 0$ so y = 0
- $z = \sqrt{(3/4)(1-(\pm 1)^2)} = 0$
- Min: z = 0 at $(x, y) = (\pm 1, 0)$

Maximum at x = 0

•
$$y^2 = (1 - 0^2)/4 = 1/4$$
 so $y = \pm \frac{1}{2}$

•
$$z = \sqrt{\frac{3}{4}(1-0^2)} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

• Max:
$$z = \frac{\sqrt{3}}{2}$$
 at $(x, y) = (0, \pm \frac{1}{2})$

General problem

Find the minimum and maximum of f(x, y, z, ...)subject to the constraint g(x, y, z, ...) = c (constant)

This problem

Find the minimum and maximum of $f(x, y) = \sqrt{1 - x^2 - y^2}$ subject to the constraint $g(x, y) = x^2 + 4y^2 = 1$

Approaches

- Use the constraint g to solve for one variable in terms of the other(s), then plug into f and find its extrema.
- New method: Lagrange Multipliers

Lagrange Multipliers

- On the contour map, when the trail (g(x, y) = c, in red) crosses a contour of f(x, y), f is lower on one side and higher on the other.
- The min/max of f(x, y) on the trail occurs when the trail is tangent to a contour of f(x, y)! The trail goes up to a max and then back down, staying on the same side of the contour of f.
- Recall $\nabla f \perp$ contours of f $\nabla g \perp$ contours of gSo contours of f and g are tangent when $\nabla f || \nabla g$, or $\nabla f = \lambda \nabla g$ for some scalar λ (called a *Lagrange Multiplier*).

Lagrange Multipliers for the ellipse path

- Find the minimum and maximum of $z = \sqrt{1 x^2 y^2}$ subject to the constraint $x^2 + 4y^2 = 1$.
- This is equivalent to finding the extrema of $z^2 = 1 x^2 y^2$.
- Set $f(x, y) = 1 x^2 y^2$ and $g(x, y) = x^2 + 4y^2$ (constraint: = 1). $\nabla f = \langle -2x, -2y \rangle$ $\nabla g = \langle 2x, 8y \rangle$

• Solve $\nabla f = \lambda \nabla g$ and g(x, y) = c for x, y, λ :

$$-2x = 2\lambda x \qquad -2y = 8\lambda y \qquad x^2 + 4y^2 = 1$$

$$2x(1+\lambda) = 0 \qquad y(2+8\lambda) = 0$$

$$x = 0 \text{ or } \lambda = -1 \qquad y = 0 \text{ or } \lambda = -1/4$$

• Solutions:

•
$$x = 0$$
 gives $y = \pm \sqrt{1 - 0^2}/2 = \pm \frac{1}{2}$, $\lambda = -2/8 = -1/4$,
 $z = \sqrt{1 - 0^2 - (1/2)^2} = \sqrt{3}/2$.

•
$$\lambda = -1$$
 gives $y = 0$, $x = \pm \sqrt{1 - 4(0)^2} = \pm 1$,
 $z = \sqrt{1 - (\pm 1)^2 - 0^2} = 0$.

Lagrange Multipliers for the ellipse path

√1 - x² - y² is continuous along the closed path x² + 4y² = 1, so
z = √3/2 at (x, y) = (0, ±1/2) are absolute maxima
z = 0 at (x, y) = (±1, 0) are absolute minima

• λ is a tool to solve for the extremal points; its value isn't important.

Lagrange Multipliers on Closed Region with Boundary

Find the extrema of $z = \sqrt{1 - x^2 - y^2}$ subject to the constraint $x^2 + 4y^2 \leq 1$.

- Analyze interior points and boundary points separately.
 Then select the minimum and maximum out of all candidates.
- In $x^2 + 4y^2 < 1$ (yellow interior), use critical points to show the maximum is f(0, 0) = 1.
- On boundary $x^2 + 4y^2 = 1$ (red ellipse), use Lagrange Multipliers. minimum $f(\pm 1, 0) = 0$, maximum $f(0, \pm \frac{1}{2}) = \frac{\sqrt{3}}{2} \approx 0.866$.
- Comparing candidates (red spots) gives absolute minimum f(±1,0) = 0, absolute maximum f(0,0) = 1.

37 / 56

An open rectangular box (5 sides but no top) has volume 500 cm³. What dimensions give the minimum surface area, and what is that area?

- Physical intuition says there is some minimum amount of material needed in order to hold a given volume. We will solve for this.
- There's no maximum, though: e.g., let x = y, $z = \frac{500}{xy} = \frac{500}{x^2}$, and let $x \to \infty$. Then $A \to \infty$.

An open rectangular box (5 sides but no top) has volume 500 cm³. What dimensions give the minimum surface area, and what is that area?

- The volume equation gives $z = \frac{500}{xy}$
- Plug that into the area equation:

$$A = xy + 2x \cdot \frac{500}{xy} + 2y \cdot \frac{500}{xy} = xy + \frac{1000}{y} + \frac{1000}{x}$$

Example: Rectangular box Method 1: Critical points

$$A = xy + \frac{1000}{y} + \frac{1000}{x}$$

• Find first derivatives:

$$A_x = y - \frac{1000}{x^2} \qquad \qquad A_y = x - \frac{1000}{y^2}$$

• Solve
$$A_x = A_y = 0$$
: Plug $y = 1000/x^2$ into $x = 1000/y^2$ to get
 $x = \frac{1000}{(1000/x^2)^2} = \frac{x^4}{1000}$ $x^4 - 1000x = 0$ $x(x^3 - 1000) = 0$
so $x = 0$ or $x = 10$ (and two complex solutions)

•
$$x = 10$$
 gives $y = \frac{1000}{x^2} = \frac{1000}{10^2} = 10$ and $z = \frac{500}{xy} = \frac{500}{(10)(10)} = 5$

Example: Rectangular box Method 1: Critical points

$$A = xy + \frac{1000}{y} + \frac{1000}{x}$$

• Check if x = y = 10 is a critical point:

$$A_x = y - \frac{1000}{x^2} = 10 - \frac{1000}{10^2} = 10 - 10 = 0$$

$$A_y = x - \frac{1000}{y^2} = 10 - \frac{1000}{10^2} = 10 - 10 = 0$$

- Yes, it's a critical point.
- Solution of original problem:

Dimensions x = y = 10 cm, z = 5 cmVolume $V = xyz = (10)(10)(5) = 500 \text{ cm}^3$ Area A = xy + 2xz + 2yz $= (10)(10) + 2(10)(5) + 2(10)(5) = 300 \text{ cm}^2$

Example: Rectangular box Method 1: Critical points

• • • •

$$A = xy + \frac{1000}{y} + \frac{1000}{x}$$

Second derivatives test at (x, y) = (10, 10):

• • • •

$$A_{xx} = \frac{2000}{x^3} = \frac{2000}{10^3} = 2$$

$$A_{yy} = \frac{2000}{y^3} = \frac{2000}{10^3} = 2$$

$$A_{xy} = 1$$

$$D = (2)(2) - 1^2 = 3 > 0 \text{ and } A_{xx} > 0 \text{ so local minimum}$$

Example: Rectangular box

Method 1: Critical points Using gradients instead of 2nd derivatives test

- The signs of A_x, A_y split the first quadrant into four regions.
- $\nabla A(x, y)$ points away from (10, 10) in each region.
- A(x, y) increases as we move away from (10, 10) in each region.
- So (10, 10) is the location of the global minimum.

3.3–3.4 Optimization

Example: Rectangular box Method 2: Lagrange Multipliers

An open rectangular box (5 sides but no top) has volume 500 cm³. What dimensions give the minimum surface area, and what is that area?

Dimensions	x, y, z > 0
Volume	V = xyz = 500
Area	A = xy + 2xz + 2yz

- Solve $\nabla A = \lambda \nabla V$ and V = xyz = 500 for x, y, z, λ .
- Solve $\langle y + 2z, x + 2z, 2x + 2y \rangle = \lambda \langle yz, xz, xy \rangle$ and V = xyz = 500
- Solve for λ :

$$\lambda = \frac{y + 2z}{yz} = \frac{x + 2z}{xz} = \frac{2x + 2y}{xy}$$
$$\lambda = \frac{1}{z} + \frac{2}{y} = \frac{1}{z} + \frac{2}{x} = \frac{2}{y} + \frac{2}{x}$$

There is no division by 0 since xyz = 500 implies $x, y, z \neq 0$.

Example: Rectangular box Method 2: Lagrange Multipliers

$$\lambda = \frac{1}{z} + \frac{2}{y} = \frac{1}{z} + \frac{2}{x} = \frac{2}{y} + \frac{2}{x}$$

• Taking any two of those at a time gives

$$\frac{1}{z} = \frac{2}{y} = \frac{2}{x}$$
 so $x = y = 2z$.

- Combine with xyz = 500: $(2z)(2z)(z) = 4z^3 = 500$ $z^3 = 500/4 = 125$ and z = 5x = y = 2z = 10(x, y, z) = (10, 10, 5) cm
- Area: $(10)(10) + 2(10)(5) + 2(10)(5) = 300 \text{ cm}^2$.
- This method doesn't tell you if it's a minimum or a maximum! Use your intuition (in this case, there is a minimum area that can encompass the volume, but not a maximum) or test nearby values.

This method doesn't tell you if it's a minimum or a maximum!

- Use your intuition (in this case, there is a minimum area that can encompass the volume, but not a maximum) or test nearby values.
- Surface xyz = 500 (with x, y, z > 0) is not bounded, so Extreme Value Theorem doesn't apply. No guarantee there's a global min/max in the region.
- Only one candidate point, so we can't compare candidates.
- Pages 197–201 extend the 2nd derivatives test to constraint equations, but it uses Linear Algebra (Math 18).

Example: Function of 10 variables

Find 10 positive #'s whose sum is 1000 and whose product is maximized: Maximize $f(x_1, \dots, x_{10}) = x_1 x_2 \dots x_{10}$ $\nabla f = \left\langle \frac{f}{x_1}, \dots, \frac{f}{x_{10}} \right\rangle$ Subject to $g(x_1, \dots, x_{10}) = x_1 + \dots + x_{10} = 1000$ $\nabla g = \langle 1, \dots, 1 \rangle$

• Solve
$$\nabla f = \lambda \nabla g$$
: $\frac{f}{x_1} = \cdots = \frac{f}{x_{10}} = \lambda \cdot 1$
 $x_1 = \cdots = x_{10}$

- Combine with constraint $g = x_1 + \dots + x_{10} = 1000$: $10 x_1 = 1000$ so $x_1 = \dots = x_{10} = 100$
- The product is $100^{10} = 10^{20}$. This turns out to be the maximum.
- Minimum: as any of the variables approach 0, the product approaches 0, without reaching it. So, in the domain x₁,..., x₁₀ > 0, the minimum does not exist.

Closest point on a plane to the origin

What point on the plane x + 2y + z = 4 is closest to the origin?

- Physical intuition tells us there is a minimum but not a maximum.
- No max: plane has infinite extent, with points arbitrarily far away.
- Approaches: vector projections (Chapter 1.2), critical points (3.3), and Lagrange Multipliers (3.4).
- **Generalization**: Given a point *A*, find the closest point to *A* on surface z = f(x, y).

Closest point on a plane to the origin Method 1: Projection

What point on the plane x + 2y + z = 4 is closest to the origin?

- Pick *any* point *Q* on the plane; let's use Q = (1, 1, 1).
- Form the projection of $\vec{a} = \overrightarrow{OQ} = \langle 1, 1, 1 \rangle$ along the normal vector $\vec{n} = \langle 1, 2, 1 \rangle$ to get \overrightarrow{OP} , where *P* is the closest point:

$$\overrightarrow{OP} = \frac{(\vec{a} \cdot \vec{n})\vec{n}}{\|\vec{n}\|^2} = \frac{(1 \cdot 1 + 1 \cdot 2 + 1 \cdot 1)\vec{n}}{1^2 + 2^2 + 1^2} = \frac{4\vec{n}}{6} = \left\langle \frac{2}{3}, \frac{4}{3}, \frac{2}{3} \right\rangle$$

• Closest point is $P = O + \overrightarrow{OP} = (\frac{2}{3}, \frac{4}{3}, \frac{2}{3}).$

What point on the plane x + 2y + z = 4 is closest to the origin?

• For (x, y, z) on the plane, the distance to the origin is

$$f(x, y, z) = \sqrt{(x - 0)^2 + (y - 0)^2 + (z - 0)^2} = \sqrt{x^2 + y^2 + z^2}$$

• This is minimized at the same place as its square:

$$g(x, y, z) = x^2 + y^2 + z^2$$

• On the plane, z = 4 - x - 2y. So find (x, y) that minimize

$$h(x, y) = x^{2} + y^{2} + (4 - x - 2y)^{2}$$

Then plug the solution(s) of (x, y) into z = 4 - x - 2y.

Closest point on a plane to the origin Method 2: Critical points

What point on the plane x + 2y + z = 4 is closest to the origin?

- Minimize $h(x, y) = x^2 + y^2 + (4 x 2y)^2$.
- First derivatives:

$$h_x = 2x - 2(4 - x - 2y) = 4x + 4y - 8$$

$$h_y = 2y + 2(-2)(4 - x - 2y) = 4x + 10y - 16$$

• Critical points: solve $h_x = h_y = 0$:

$$h_x = 0 \quad \text{gives} \qquad y = 2 - x$$

$$h_y = 0 \quad \text{becomes} \qquad 4x + 10(2 - x) - 16$$

$$= 4x + 20 - 10x - 16 = -6x + 4 = 0$$
so
$$x = 2/3 \quad \text{and} \quad y = 2 - 2/3 = 4/3$$
• This gives $z = 4 - x - 2y = 4 - (2/3) - 2(4/3) = 2/3$.
• The point is $\boxed{(\frac{2}{3}, \frac{4}{3}, \frac{2}{3})}$.
Its distance to the origin is $\sqrt{(\frac{2}{3})^2 + (\frac{4}{3})^2 + (\frac{2}{3})^2} = \frac{\sqrt{24}}{3} = \frac{2\sqrt{6}}{3}$.

Closest point on a plane to the origin Method 2: Critical points

2nd derivative test

$$h(x, y) = x^{2} + y^{2} + (4 - x - 2y)^{2}$$

$$h_x = 4x + 4y - 8$$
$$h_y = 4x + 10y - 16$$

$$h_{xx} = 4 \quad h_{yy} = 10 \quad h_{xy} = 4$$

$$D = (4)(10) - 4^2 = 24$$

Since D > 0 and $h_{xx} > 0$, it's a local minimum.

Gradient diagram

The plane is split into four regions, according to the signs of h_x and h_y .

h increases as we move away from $(\frac{2}{3}, \frac{4}{3})$, so it's an absolute minimum.

Closest point on a plane to the origin Method 3: Lagrange Multipliers

What point on the plane z = 4 - x - 2y is closest to the origin?

- Rewrite this as a constraint function = constant: x + 2y + z = 4
- Minimize $f(x, y, z) = x^2 + y^2 + z^2$ (square of distance to origin) Subject to g(x, y, z) = x + 2y + z = 4 (constraint: on plane)

• Solve
$$\nabla f = \lambda \nabla g$$
 and $x + 2y + z = 4$:
 $\langle 2x, 2y, 2z \rangle = \lambda \langle 1, 2, 1 \rangle$ $x + 2y + z = 4$
 $2x = \lambda \cdot 1$ $2y = \lambda \cdot 2$ $2z = \lambda \cdot 1$
 $x = \frac{\lambda}{2}$ $y = \lambda$ $z = \frac{\lambda}{2}$ $\frac{\lambda}{2} + 2\lambda + \frac{\lambda}{2} = 3\lambda = 4$ so $\lambda = \frac{4}{3}$
 $x = \frac{2}{3}$ $y = \frac{4}{3}$ $z = \frac{2}{3}$

• The closest point is $(\frac{2}{3}, \frac{4}{3}, \frac{2}{3})$. Its distance to the origin is $\sqrt{(\frac{2}{3})^2 + (\frac{4}{3})^2 + (\frac{2}{3})^2} = \sqrt{\frac{24}{9}} = \frac{2\sqrt{6}}{3}$.

Closest point on a surface to a given point

What point *Q* on the paraboloid $z = x^2 + y^2$ is closest to P = (1, 2, 0)?

Closest point on a surface to a given point

What point Q on the paraboloid z = x² + y² is closest to P = (1, 2, 0)?
Minimize the square of the distance of P to Q = (x, y, z)

$$f(x, y, z) = (x - 1)^{2} + (y - 2)^{2} + (z - 0)^{2}$$

subject to the constraint

$$g(x, y, z) = x^2 + y^2 - z = 0$$

• $\nabla f = \langle 2(x-1), 2(y-2), 2z \rangle$ $\nabla g = \langle 2x, 2y, -1 \rangle$ • Solve $\nabla f = \lambda \nabla g$ and g(x, y, z) = 0 for x, y, z, λ :

$$2(x-1) = \lambda(2x) \qquad 2(y-2) = \lambda(2y) \qquad 2z = -\lambda$$
$$x^2 + y^2 - z = 0$$

- Note $x \neq 0$ since the 1st equation would be -2 = 0. Similarly, $y \neq 0$. So we may divide by x and y.
- The first three give $\lambda = 1 \frac{1}{x} = 1 \frac{2}{y} = -2z$ so y = 2x
- Constraint gives $z = x^2 + y^2 = x^2 + (2x)^2 = 5x^2$

Closest point on a surface to a given point

What point *Q* on the paraboloid $z = x^2 + y^2$ is closest to P = (1, 2, 0)?

- So far, y = 2x, $z = 5x^2$, and $\lambda = 1 \frac{1}{x} = 1 \frac{2}{y} = -2z$.
- Then $1 \frac{1}{x} = -2z = -2(5x^2)$ gives $1 \frac{1}{x} = -10x^2$, so

$$10x^3 + x - 1 = 0$$

 Solve exactly with the cubic equation or approximately with a numerical root finder.

https://en.wikipedia.org/wiki/Cubic_function#Roots_of_a_cubic_function It has one real root (and two complex roots, which we discard):

$$x = \frac{\alpha}{30} - \frac{1}{\alpha} \approx 0.3930027 \quad \text{where } \alpha = \sqrt[3]{1350 + 30\sqrt{2055}}$$
$$y = 2x \approx 0.7860055 \quad z = 5x^2 \approx 0.7722557$$
$$Q = (x, 2x, 5x^2) \approx (0.3930027, 0.7860055, 0.7722557)$$