3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

Prof. Tesler

Math 20C
Fall 2018

Optimizing $y=f(x)$

- In Math 20A, we found the minimum and maximum of $y=f(x)$ by using derivatives.
- First derivative:

Solve for points where $f^{\prime}(x)=0$.
Each such point is called a critical point.

- Second derivative:

For each critical point $x=a$, check the sign of $f^{\prime \prime}(a)$:

- $f^{\prime \prime}(a)>0$: The value $y=f(a)$ is a local minimum.
- $f^{\prime \prime}(a)<0$: The value $y=f(a)$ is a local maximum.
- $f^{\prime \prime}(a)=0$: The test is inconclusive.
- Also may need to check points where $f(x)$ is defined but the derivatives aren't, as well as boundary points.
- We will generalize this to functions $z=f(x, y)$.

Local extrema (= maxima or minima)

Consider a function $z=f(x, y)$.
The point $(x, y)=(a, b)$ is a

- local maximum when $f(x, y) \leqslant f(a, b)$ for all (x, y) in a small disk (filled-in circle) around (a, b);
- global maximum (a.k.a. absolute maximum) when $f(x, y) \leqslant f(a, b)$ for all (x, y);
- local minimum and global minimum are similar with $f(x, y) \geqslant f(a, b)$.
- A, C, E are local maxima (plural of maximum) E is the global maximum
D, G are local minima
G is the global minimum
- B is maximum in the red cross-section but minimum in the purple cross-section! It's called a saddle point.

Critical points on a contour map

Classify each point P, Q, R, S as local maximum or minimum, saddle point, or none.

- Isolated max/min usually have small closed curves around them. Values decrease towards P, so P is a local minimum. Values increase towards Q, so Q is a local maximum.

Critical points on a contour map

- The crossing contours have the same value, 1. (If they have different values, the function is undefined at that point.)
- Here, the crossing contours give four regions around R.
- The function has
- a local min. at R on lines with positive slope (goes from >1 to 1 to >1)
- a local max. at R on lines with neg. slope (goes from <1 to 1 to <1).
- Thus, R is a saddle point.

Critical points on a contour map

- S is a regular point.

Its level curve ≈ 8 is implied but not shown.
The values are bigger on one side and smaller on the other.
P : local min $\quad Q$: local max $\quad R$: saddle point $\quad S$: none

Contour map of $z=y / x$: crossing lines

- Contours of $z=y / x$ are diagonal lines: $z=c$ along $y=c x$.
- Contours cross at $(0,0)$ and have different values there.
- Function $z=y / x$ is undefined at $(0,0)$.

Contour map of $z=\sin (y)$

Minimum and maximum form curves, not just isolated points

- Contours of $z=f(x, y)=\sin (y)$ are horizontal lines $y=\arcsin (z)$
- Maximum at $y=\left(2 k+\frac{1}{2}\right) \pi$ for all integers k Minimum at $y=\left(2 k-\frac{1}{2}\right) \pi$
- These are curves, not isolated points enclosed in contours.

Finding the minimum/maximum values of $z=f(x, y)$

- The tangent plane is horizontal at a local minimum or maximum:

$$
f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)-z=0
$$

The normal vector $\left\langle f_{x}(a, b), f_{y}(a, b),-1\right\rangle \| z$-axis
when $f_{x}(a, b)=f_{y}(a, b)=0$, or $\nabla f(a, b)=\overrightarrow{0}$.

- At points where $\nabla f \neq \overrightarrow{0}$, we can make $f(x, y)$
- larger by moving in the direction of ∇f;
- smaller by moving in the direction of $-\nabla f$.
- (a, b) is a critical point if $\nabla f(a, b)$ is $\overrightarrow{0}$ or is undefined.

These are candidates for being maximums or minimums.

- Critical points found in the same way for $f(x, y, z, \ldots)$.

Completing the squares review

- $(x+m)^{2}=x^{2}+2 m x+m^{2}$
- For a quadratic $x^{2}+b x+c$, take half the coefficient of x :

$$
b / 2
$$

- Form the square:

$$
(x+b / 2)^{2}=x^{2}+b x+(b / 2)^{2}
$$

- Adjust the constant term:

$$
x^{2}+b x+c=(x+b / 2)^{2}+d \quad \text { where } d=c-(b / 2)^{2}
$$

Example: $x^{2}+10 x+13$

- Take half the coefficient of $x: 10 / 2=5$
- Expand $(x+5)^{2}=x^{2}+10 x+25$
- Add/subtract the necessary constant to make up the difference:

$$
x^{2}+10 x+13=(x+5)^{2}-12
$$

Completing the squares review

For $a x^{2}+b x+c$, complete the square for $a\left(x^{2}+(b / a) x\right)$ and then adjust the constant.

Example: $10 y^{2}-60 y+8$

- $10 y^{2}-60 y+8=10\left(y^{2}-6 y\right)+8$
- $y^{2}-6 y=(y-3)^{2}-9$
- $10 y^{2}-60 y+8=10(y-3)^{2}+$?
- $10(y-3)^{2}=10\left(y^{2}-6 y+9\right)=10 y^{2}-60 y+90$
- $10 y^{2}-60 y+8=10(y-3)^{2}-82$

Critical points

- Let $f(x, y)=x^{2}-2 x+y^{2}-4 y+15$

$$
\nabla f=\langle 2 x-2,2 y-4\rangle
$$

- $\nabla f=\overrightarrow{0}$ at $x=1, y=2$, so $(1,2)$ is a critical point.
- Use $(x-1)^{2}=x^{2}-2 x+1$

$$
\begin{aligned}
(y-2)^{2} & =y^{2}-4 y+4 \\
f(x, y) & =(x-1)^{2}+(y-2)^{2}+10
\end{aligned}
$$

We "completed the squares": $x^{2}-a x=\left(x-\frac{a}{2}\right)^{2}-\left(\frac{a}{2}\right)^{2}$

- $f(x, y) \geqslant 10$ everywhere, with global minimum 10 at $(x, y)=(1,2)$.

Second derivative test for functions of two variables

How to classify critical points $\nabla f(a, b)=\overrightarrow{0}$ as local minima/maxima or saddle points
Compute all points where $\nabla f(a, b)=\overrightarrow{0}$, and classify each as follows:

- Compute the discriminant at point (a, b) :

$$
D=\underbrace{\left|\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right|}=f_{x x}(a, b) f_{y y}(a, b)-\left(f_{x y}(a, b)\right)^{2}
$$

Determinant of "Hessian matrix" at $(x, y)=(a, b)$

- If $D>0$ and $f_{x x}>0$ then $z=f(a, b)$ is a local minimum; If $D>0$ and $f_{x x}<0$ then $z=f(a, b)$ is a local maximum; If $D<0$ then f has a saddle point at (a, b);
If $D=0$ then it's inconclusive; min, max, saddle, or none of these, are all possible.

Example:
 $f(x, y)=x^{2}-y^{2}$

Find the critical points of $f(x, y)=x^{2}-y^{2}$ and classify them using the second derivatives test.

- $\nabla f=\langle 2 x,-2 y\rangle=\overrightarrow{0}$ at $(x, y)=(0,0)$.
- The $x=0$ cross-section is $f(0, y)=-y^{2} \leqslant 0$. The $y=0$ cross-section is $f(x, 0)=x^{2} \geqslant 0$. It is neither a minimum nor a maximum.
- $f_{x x}(x, y)=2 \quad$ and $\quad f_{x x}(0,0)=2$
$f_{y y}(x, y)=-2 \quad$ and $\quad f_{y y}(0,0)=-2$
$f_{x y}(x, y)=0 \quad$ and $\quad f_{x y}(0,0)=0$

$$
\begin{aligned}
D & =f_{x x}(0,0) f_{y y}(0,0)-\left(f_{x y}(0,0)\right)^{2} \\
& =(2)(-2)-0^{2}=-4<0
\end{aligned}
$$

so $(0,0)$ is a saddle point

Example:
 $f(x, y)=x^{2}-y^{2}$

- $\nabla f=\langle 2 x,-2 y\rangle$ points in the direction of greatest increase of $f(x, y)$.
- The function increases as we move towards the x-axis and away from the y-axis. At the origin, it increases or decreases depending on the direction of approach.

Detailed direction
of gradient

General direction of gradient

Example: $f(x, y)=8 y^{3}+12 x^{2}-24 x y$

Find the critical points of $f(x, y)$ and classify them using the second derivatives test.

- Solve for first derivatives equal to 0 :

$$
\begin{array}{lll}
f_{x}=24 x-24 y=0 & \text { gives } & x=y \\
f_{y}=24 y^{2}-24 x=0 & \text { gives } & 24 y^{2}-24 y=24 y(y-1)=0 \\
& \text { so } & y=0 \text { or } y=1 \\
x=y & \text { so } & (x, y)=(0,0) \text { or }(1,1)
\end{array}
$$

- Critical points: $(0,0)$ and $(1,1)$
- Second derivative test:

$$
\left(D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}\right)
$$

Crit pt	f	$f_{x x}=24$	$f_{y y}=48 y$	$f_{x y}=-24$	D	Type
$(0,0)$	0	24	0	-24	-576	$D<0$ saddle
$(1,1)$	-4	24	48	-24	576	$D>0$ and $f_{x x}>0$ local minimum

- No absolute min or max: $f(0, y)=8 y^{3}$ ranges over $(-\infty, \infty)$

Example: $\quad f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$

Find the critical points of $f(x, y)$ and classify them using the second derivatives test.

- Solve for first derivatives equal to 0 :

$$
\begin{array}{lll}
f_{x}=3 x^{2}-3=0 & \text { gives } & x= \pm 1 \\
f_{y}=3 y^{2}-6 y=3 y(y-2)=0 & \text { gives } & y=0 \text { or } y=2
\end{array}
$$

- Critical points: $(-1,0),(1,0),(-1,2),(1,2)$
- Second derivative test:

$$
\left(D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}\right)
$$

Crit pt $f \quad f_{x x}=6 x \quad f_{y y}=6 y-6 \quad f_{x y}=0 \quad D \quad$ Type

$(-1,0)$	3	-6	-6	0	36	$D>0$ and $f_{x x}<0$:
local max						

Example: $\quad f(x, y)=x y(1-x-y)$

Find the critical points of $f(x, y)$ and classify them.

- Solve for first derivatives equal to 0 :
$f=x y-x^{2} y-x y^{2}$
$f_{x}=y-2 x y-y^{2}=y(1-2 x-y)$ gives $y=0$ or $1-2 x-y=0$
$f_{y}=x-x^{2}-2 x y=x(1-x-2 y)$ gives $x=0$ or $1-x-2 y=0$
- Two solutions of $f_{x}=0$ and two of $f_{y}=0$ gives $2 \cdot 2=4$ combinations:
- $\quad y=0$ and $\quad x=0$ gives $(x, y)=(0,0)$.
- $\quad y=0$ and $1-x-2 y=0$ gives $(x, y)=(1,0)$.
- $1-2 x-y=0$ and $\quad x=0$ gives $(x, y)=(0,1)$.
- $1-2 x-y=0$ and $1-x-2 y=0$:

The $1^{\text {st }}$ equation gives $y=1-2 x$. Plug that into the $2^{\text {nd }}$ equation:

$$
0=1-x-2 y=1-x-2(1-2 x)=1-x-2+4 x=3 x-1
$$

$$
\text { so } x=\frac{1}{3} \text { and } y=1-2 x=1-2\left(\frac{1}{3}\right)=\frac{1}{3} \quad \text { gives }(x, y)=\left(\frac{1}{3}, \frac{1}{3}\right) .
$$

Example: $\quad f(x, y)=x y(1-x-y)$

Classify the critical points using the second derivatives test.

- Derivatives:

$$
\begin{aligned}
& f=x y-x^{2} y-x y^{2} \quad f_{x}=y-2 x y-y^{2} \quad f_{y}=x-x^{2}-2 x y \\
& f_{x x}=-2 y \quad f_{y y}=-2 x \\
& f_{x y}=f_{y x}=1-2 x-2 y
\end{aligned}
$$

- Second derivative test:

$$
\left(D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}\right)
$$

Crit pt	f	$f_{x x}$	$f_{y y}$	$f_{x y}$	D	Type
$(0,0)$	0	0	0	1	-1	$D<0$: saddle
$(1,0)$	0	0	-2	-1	-1	$D<0$: saddle
$(0,1)$	0	-2	0	-1	-1	$D<0$: saddle
$(1 / 3,1 / 3)$	$1 / 27$	$-2 / 3$	$-2 / 3$	$-1 / 3$	$1 / 3$	$D>0$ and $f_{x x}<0:$
						local maximum

Boundary of a region

- Consider a region $A \subset \mathbb{R}^{n}$.
- A point is a boundary point of A if every disk (blue) around that point contains some points in A and some points not in A.
- A point is an interior point of A if there is a small enough disk (pink) around it fully contained in A.
- In both A and B, the boundary points are the same: the perimeter of the hexagon.
- ∂A denotes the set of boundary points of A.

Extreme Value Theorem

- A region is bounded if it fits in a disk of finite radius.
- A region is closed if it contains all its boundary points and open if every point in it is an interior point.
- Open and closed are not opposites: e.g., \mathbb{R}^{2} is open and closed! The third example above is neither open nor closed.

Extreme Value Theorem

If $f(x, y)$ is continuous on a closed and bounded region, then it has a global maximum and a global minimum within that region.

To find these, consider the local minima/maxima of $f(x, y)$ that are within the region, and also analyze the boundary of the region.

Example: $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in a triangle

Find the global minimum and maximum of $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in the triangle with vertices $(0,0),(0,3),(3,3)$.

Critical points inside the region

- First find and classify the critical points of f. (We already did.)
- $f(1,2)=-5$ is a local minimum and is inside the triangle.
- Ignore the other critical points since they're outside the triangle.
- Ignore the saddle points.

Example: $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in a triangle

Find the global minimum and maximum of $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in the triangle with vertices $(0,0),(0,3),(3,3)$.

Extrema on left edge: $x=0$ and $0 \leqslant y \leqslant 3$

- Set

$$
\begin{aligned}
g(y) & =f(0, y)=y^{3}-3 y^{2}+1 \text { for } 0 \leqslant y \leqslant 3 \\
g^{\prime}(y) & =3 y^{2}-6 y=3 y(y-2) \\
g^{\prime}(y) & =0 \quad \text { at } y=0 \text { or } 2 .
\end{aligned}
$$

- We consider $y=0$ and 2 by that test. We also consider boundaries $y=0$ and 3 .
- Candidates: $f(0,0)=1$

$$
\begin{aligned}
& f(0,2)=-3 \\
& f(0,3)=1
\end{aligned}
$$

- We could use the second derivatives test for one variable, but we'll do it another way.

Example: $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in a triangle

Find the global minimum and maximum of $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in the triangle with vertices $(0,0),(0,3),(3,3)$.

Extrema on top edge: $y=3$ and $0 \leqslant x \leqslant 3$

- Set

$$
\left.\left.\begin{array}{rl}
h(x) & =f(x, 3)
\end{array} \begin{array}{rl}
& =x^{3}+27-3 x-27+1 \\
& =x^{3}-3 x+1 \text { for } 0 \leqslant x \leqslant 3 \\
h^{\prime}(x) & =3 x^{2}-3 \\
h^{\prime}(x) & =0 \quad \text { at } x
\end{array}\right)= \pm 1 \text { (but }-1 \text { is out of range) }\right) ~ \$
$$

- Also consider the boundaries $x=0$ and 3 .
- Candidates: $f(0,3)=1$

$$
\begin{aligned}
& f(1,3)=-1 \\
& f(3,3)=19
\end{aligned}
$$

Example: $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in a triangle

Find the global minimum and maximum of $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in the triangle with vertices $(0,0),(0,3),(3,3)$.

Diagonal edge: $y=x$ for $0 \leqslant x \leqslant 3$

- For $0 \leqslant x \leqslant 3$, set

$$
\begin{aligned}
& \begin{array}{c}
p(x)=f(x, x)=2 x^{3}-3 x-3 x^{2}+1 \\
\quad=2 x^{3}-3 x^{2}-3 x+1
\end{array} \\
& \begin{array}{c}
p^{\prime}(x)=6 x^{2}-6 x-3
\end{array} \\
& p^{\prime}(x)=0 \quad \text { at } x=\frac{1 \pm \sqrt{3}}{2} \approx-0.366,1.366 \\
& \text { (but } \frac{1-\sqrt{3}}{2} \text { is out of range) }
\end{aligned}
$$

- Also consider the boundaries $x=0$ and 3 .
- Candidates: $f(0,0)=1$

$$
\begin{aligned}
f(3,3) & =19 \\
f\left(\frac{1+\sqrt{3}}{2}, \frac{1+\sqrt{3}}{2}\right) & =-1-\frac{3 \sqrt{3}}{2} \approx-3.598
\end{aligned}
$$

Example: $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in a triangle

Find the global minimum and maximum of $f(x, y)=x^{3}+y^{3}-3 x-3 y^{2}+1$ in the triangle with vertices $(0,0),(0,3),(3,3)$.

Compare all candiate points

$f(1,2)=-5$:
The global minimum is -5 . It occurs at $(x, y)=(1,2)$.
$f(3,3)=19:$
The global maximum is 19 . It occurs at $(x, y)=(3,3)$.

Extrema of $f(x, y)=|x y|: \nabla f$ isn't defined everywhere

Extrema of $f(x, y)=|x y|$ on rectangle $-1 \leqslant x \leqslant 1,-2 \leqslant y \leqslant 2$

- 1st \& 3rd quadrants: $f(x, y)=x y$ and $\nabla f=\langle y, x\rangle$.
- 2nd \& 4th quadrants: $f(x, y)=-x y$ and $\nabla f=-\langle y, x\rangle$.
- Away from the axes, $\nabla f \neq \overrightarrow{0}$.
- On the axes, ∇f is undefined.
- $f(x, 0)=f(0, y)=0$ on the axes.

All points on the axes are tied for global minimum.

- On the perimeter, $f(\pm 1, y)=|y|$ and $f(x, \pm 2)=2|x|$:
- Minimum $f=0$ at $(\pm 1,0)$ and $(0, \pm 2)$.
- Maximum $f=2$ at $(1,2),(1,-2),(-1,2),(-1,-2)$.
- The global maximum is $f=2$ at $(1,2),(1,-2),(-1,2),(-1,-2)$.

Extrema of $f(x, y)=|x y|: \nabla f$ isn't defined everywhere

> Extrema of $f(x, y)=|x y|$ on open rectangle $-1<x<1,-2<y<2$

- Global minimum is still $f=0$ on axes.
- No global maximum. While $f(x, y)$ gets arbitrarily close to 2 , it never reaches 2 since those corners are not in the open rectangle.

Optional: Second derivative test for $f(x, y, z, \ldots)$

Full coverage requires Linear Algebra (Math 18)

- The Hessian matrix of $f(x, y, z)$ is

$$
\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial z \partial x} \\
\frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial y^{2}} & \frac{\partial^{2} f}{\partial z \partial y} \\
\frac{\partial^{2} f}{\partial x \partial z} & \frac{\partial^{2} f}{\partial y \partial z} & \frac{\partial^{2} f}{\partial z^{2}}
\end{array}\right]
$$

- For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, it's an $n \times n$ matrix of $2^{\text {nd }}$ partial derivatives.
- For each point with $\nabla f=\overrightarrow{0}$, compute the determinants of the upper left $1 \times 1,2 \times 2,3 \times 3, \ldots, n \times n$ submatrices.
- If the $n \times n$ determinant is zero, the test is inconclusive.
- If the determinants are all positive, it's a local minimum.
- If signs of determinants alternate,,,$-+- \ldots$, it's a local maximum.
- Otherwise, it's a saddle point.
- We did 2×2 and 3×3 determinants. For 1×1, $\operatorname{det}[x]=x$. $n \times n$ determinants are covered in Linear Algebra (Math 18).

Optional example: $f(x, y, z)=x^{2}+y^{2}+z^{2}+2 x y z+10$

- Solve $\nabla f=\overrightarrow{0}: \quad \nabla f=\langle 2 x+2 y z, 2 y+2 x z, 2 z+2 x y\rangle=\overrightarrow{0}$

$$
x=-y z, \quad y=-x z, \quad z=-x y .
$$

- There are five solutions (x, y, z) of $\nabla f=\overrightarrow{0}$ (work not shown):

$$
(0,0,0),(1,1,-1),(-1,1,1),(1,-1,1),(-1,-1,-1)
$$

- Hessian $=\left[\begin{array}{ccc}2 & 2 z & 2 y \\ 2 z & 2 & 2 x \\ 2 y & 2 x & 2\end{array}\right] \quad$ At $(0,0,0):\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$

$$
\operatorname{det}[2]=2 \quad \operatorname{det}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=4 \quad \operatorname{det}\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]=8
$$

- All positive, so $f(0,0,0)=10$ is a local minimum.

Optional example: $f(x, y, z)=x^{2}+y^{2}+z^{2}+2 x y z+10$

- Hessian $=\left[\begin{array}{ccc}2 & 2 z & 2 y \\ 2 z & 2 & 2 x \\ 2 y & 2 x & 2\end{array}\right] \quad$ At $(1,1,-1):\left[\begin{array}{ccc}2 & -2 & 2 \\ -2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]$
$\operatorname{det}[2]=2 \quad \operatorname{det}\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=0 \quad \operatorname{det}\left[\begin{array}{ccc}2 & -2 & 2 \\ -2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]=-32$
- Signs $+, 0,-$, so saddle point.
- Critical points $(-1,1,1),(1,-1,1),(-1,-1,-1)$ give the same determinants $2,0,-32$ as this case, so they're also saddle points.

Optimization with a constraint

- A hiker hikes on a mountain $z=f(x, y)=\sqrt{1-x^{2}-y^{2}}$.
- Plot their trail on a topographic map: $x^{2}+4 y^{2}=1$ (red ellipse).
- What is the minimum and maximum height reached, and where?
- On the ellipse, $y^{2}=\left(1-x^{2}\right) / 4$ and $-1 \leqslant x \leqslant 1$, so

$$
z=\sqrt{1-x^{2}-\left(1-x^{2}\right) / 4}=\sqrt{\frac{3}{4}\left(1-x^{2}\right)}
$$

Minimum at $x= \pm 1$

- $y^{2}=\left(1-(\pm 1)^{2}\right) / 4=0$ so $y=0$
- $z=\sqrt{(3 / 4)\left(1-(\pm 1)^{2}\right)}=0$
- Min: $z=0$ at $(x, y)=(\pm 1,0)$

Maximum at $x=0$

- $y^{2}=\left(1-0^{2}\right) / 4=1 / 4$ so $y= \pm \frac{1}{2}$
- $z=\sqrt{\frac{3}{4}\left(1-0^{2}\right)}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}$
- Max: $z=\frac{\sqrt{3}}{2}$ at $(x, y)=\left(0, \pm \frac{1}{2}\right)$

3.4. Lagrange Multipliers

General problem

Find the minimum and maximum of subject to the constraint

$$
\begin{aligned}
& f(x, y, z, \ldots) \\
& g(x, y, z, \ldots)=c \text { (constant) }
\end{aligned}
$$

This problem

Find the minimum and maximum of

$$
\begin{aligned}
& f(x, y)=\sqrt{1-x^{2}-y^{2}} \\
& g(x, y)=x^{2}+4 y^{2}=1
\end{aligned}
$$

subject to the constraint

Approaches

- Use the constraint g to solve for one variable in terms of the other(s), then plug into f and find its extrema.
- New method: Lagrange Multipliers

Lagrange Multipliers

- On the contour map, when the trail $(g(x, y)=c$, in red) crosses a contour of $f(x, y), f$ is lower on one side and higher on the other.
- The min/max of $f(x, y)$ on the trail occurs when the trail is tangent to a contour of $f(x, y)$! The trail goes up to a max and then back down, staying on the same side of the contour of f.
- Recall $\quad \nabla f \perp$ contours of $f \quad \nabla g \perp$ contours of g So contours of f and g are tangent when $\nabla f \| \nabla g$, or $\nabla f=\lambda \nabla g$ for some scalar λ (called a Lagrange Multiplier).

Lagrange Multipliers for the ellipse path

- Find the minimum and maximum of $z=\sqrt{1-x^{2}-y^{2}}$ subject to the constraint

$$
x^{2}+4 y^{2}=1
$$

- This is equivalent to finding the extrema of $z^{2}=1-x^{2}-y^{2}$.
- Set $f(x, y)=1-x^{2}-y^{2}$ and $g(x, y)=x^{2}+4 y^{2} \quad$ (constraint: $=1$).

$$
\nabla f=\langle-2 x,-2 y\rangle \quad \nabla g=\langle 2 x, 8 y\rangle
$$

- Solve $\nabla f=\lambda \nabla g$ and $g(x, y)=c$ for x, y, λ :

$$
\begin{array}{rlrl}
-2 x & =2 \lambda x & -2 y & =8 \lambda y \\
2 x(1+\lambda) & =0 & y(2+8 \lambda) & =0 \\
x=0 \text { or } \lambda & =-1 & y=0 \text { or } \lambda & =-1 / 4
\end{array}
$$

- Solutions:
- $x=0 \quad$ gives $\quad y= \pm \sqrt{1-0^{2}} / 2= \pm \frac{1}{2}, \quad \lambda=-2 / 8=-1 / 4$,

$$
z=\sqrt{1-0^{2}-(1 / 2)^{2}}=\sqrt{3} / 2
$$

- $\lambda=-1 \quad$ gives $\quad y=0, \quad x= \pm \sqrt{1-4(0)^{2}}= \pm 1$,

$$
z=\sqrt{1-(\pm 1)^{2}-0^{2}}=0
$$

Lagrange Multipliers for the ellipse path

- $\sqrt{1-x^{2}-y^{2}}$ is continuous along the closed path $x^{2}+4 y^{2}=1$, so
- $z=\frac{\sqrt{3}}{2}$ at $(x, y)=\left(0, \pm \frac{1}{2}\right)$ are absolute maxima
- $z=0$ at $(x, y)=(\pm 1,0)$ are absolute minima
- λ is a tool to solve for the extremal points; its value isn't important.

Lagrange Multipliers on Closed Region with Boundary

Find the extrema of $\quad z=\sqrt{1-x^{2}-y^{2}}$ subject to the constraint $x^{2}+4 y^{2} \leqslant 1$.

- Analyze interior points and boundary points separately. Then select the minimum and maximum out of all candidates.
- In $x^{2}+4 y^{2}<1$ (yellow interior), use critical points to show the maximum is $f(0,0)=1$.
- On boundary $x^{2}+4 y^{2}=1$ (red ellipse), use Lagrange Multipliers. minimum $f(\pm 1,0)=0$, maximum $f\left(0, \pm \frac{1}{2}\right)=\frac{\sqrt{3}}{2} \approx 0.866$.
- Comparing candidates (red spots) gives absolute minimum $f(\pm 1,0)=0$, absolute maximum $f(0,0)=1$.

Example: Rectangular box

Method 1: Critical points

An open rectangular box (5 sides but no top) has volume $500 \mathrm{~cm}^{3}$. What dimensions give the minimum surface area, and what is that area?

Volume $\quad V=x y z=500$
Area bottom + left \& right

+ front \& back
$A=x y+2 x z+2 y z$
- Physical intuition says there is some minimum amount of material needed in order to hold a given volume. We will solve for this.
- There's no maximum, though:
e.g., let $x=y, z=\frac{500}{x y}=\frac{500}{x^{2}}$, and let $x \rightarrow \infty$. Then $A \rightarrow \infty$.

Example: Rectangular box

Method 1: Critical points

An open rectangular box (5 sides but no top) has volume $500 \mathrm{~cm}^{3}$. What dimensions give the minimum surface area, and what is that area?

Dimensions $x, y, z>0$
Volume $\quad V=x y z=500$
Area $\quad A=x y+2 x z+2 y z$

- The volume equation gives $z=\frac{500}{x y}$
- Plug that into the area equation:

$$
A=x y+2 x \cdot \frac{500}{x y}+2 y \cdot \frac{500}{x y}=x y+\frac{1000}{y}+\frac{1000}{x}
$$

Example: Rectangular box

Method 1: Critical points

$$
A=x y+\frac{1000}{y}+\frac{1000}{x}
$$

- Find first derivatives:

$$
A_{x}=y-\frac{1000}{x^{2}} \quad A_{y}=x-\frac{1000}{y^{2}}
$$

- Solve $A_{x}=A_{y}=0$: Plug $y=1000 / x^{2}$ into $x=1000 / y^{2}$ to get

$$
x=\frac{1000}{\left(1000 / x^{2}\right)^{2}}=\frac{x^{4}}{1000} \quad x^{4}-1000 x=0 \quad x\left(x^{3}-1000\right)=0
$$

so $x=0$ or $x=10$ (and two complex solutions)

- $x=0$ violates $V=x y z=500$.

Also, we need $x>0$ for a real box.

- $x=10$ gives $y=\frac{1000}{x^{2}}=\frac{1000}{10^{2}}=10$ and $z=\frac{500}{x y}=\frac{500}{(10)(10)}=5$

Example: Rectangular box

Method 1: Critical points

$$
A=x y+\frac{1000}{y}+\frac{1000}{x}
$$

- Check if $x=y=10$ is a critical point:

$$
\begin{aligned}
& A_{x}=y-\frac{1000}{x^{2}}=10-\frac{1000}{10^{2}}=10-10=0 \\
& A_{y}=x-\frac{1000}{y^{2}}=10-\frac{1000}{10^{2}}=10-10=0
\end{aligned}
$$

- Yes, it's a critical point.
- Solution of original problem:

Dimensions $x=y=10 \mathrm{~cm}, z=5 \mathrm{~cm}$
Volume $\quad V=x y z=(10)(10)(5)=500 \mathrm{~cm}^{3}$
Area $\quad A=x y+2 x z+2 y z$

$$
=(10)(10)+2(10)(5)+2(10)(5)=300 \mathrm{~cm}^{2}
$$

Example: Rectangular box

Method 1: Critical points

$$
A=x y+\frac{1000}{y}+\frac{1000}{x}
$$

Second derivatives test at $(x, y)=(10,10)$:

$$
\begin{aligned}
A_{x x} & =\frac{2000}{x^{3}}=\frac{2000}{10^{3}}=2 \\
A_{y y} & =\frac{2000}{y^{3}}=\frac{2000}{10^{3}}=2 \\
A_{x y} & =1 \\
D & =(2)(2)-1^{2}=3>0 \text { and } A_{x x}>0 \text { so local minimum }
\end{aligned}
$$

Example: Rectangular box

Method 1: Critical points Using gradients instead of $2^{\text {nd }}$ derivatives test

$$
A=x y+\frac{1000}{y}+\frac{1000}{x} \quad A_{x}=y-\frac{1000}{x^{2}} \quad A_{y}=x-\frac{1000}{y^{2}}
$$

- The signs of A_{x}, A_{y} split the first quadrant into four regions.
- $\nabla A(x, y)$ points away from $(10,10)$ in each region.
- $A(x, y)$ increases as we move away from $(10,10)$ in each region.
- So $(10,10)$ is the location of the global minimum.

Example: Rectangular box

Method 2: Lagrange Multipliers

An open rectangular box (5 sides but no top) has volume $500 \mathrm{~cm}^{3}$. What dimensions give the minimum surface area, and what is that area?

Dimensions $x, y, z>0$
Volume $\quad V=x y z=500$
Area $\quad A=x y+2 x z+2 y z$

- Solve $\nabla A=\lambda \nabla V$ and $V=x y z=500$ for x, y, z, λ.
- Solve $\langle y+2 z, x+2 z, 2 x+2 y\rangle=\lambda\langle y z, x z, x y\rangle$ and $V=x y z=500$
- Solve for λ :

$$
\begin{gathered}
\lambda=\frac{y+2 z}{y z}=\frac{x+2 z}{x z}=\frac{2 x+2 y}{x y} \\
\lambda=\frac{1}{z}+\frac{2}{y}=\frac{1}{z}+\frac{2}{x}=\frac{2}{y}+\frac{2}{x}
\end{gathered}
$$

There is no division by 0 since $x y z=500$ implies $x, y, z \neq 0$.

Example: Rectangular box

Method 2: Lagrange Multipliers

$$
\lambda=\frac{1}{z}+\frac{2}{y}=\frac{1}{z}+\frac{2}{x}=\frac{2}{y}+\frac{2}{x}
$$

- Taking any two of those at a time gives

$$
\frac{1}{z}=\frac{2}{y}=\frac{2}{x} \quad \text { so } x=y=2 z
$$

- Combine with $x y z=500:(2 z)(2 z)(z)=4 z^{3}=500$

$$
\begin{aligned}
& z^{3}=500 / 4=125 \text { and } z=5 \\
& x=y=2 z=10 \\
& (x, y, z)=(10,10,5) \mathrm{cm}
\end{aligned}
$$

- Area: $(10)(10)+2(10)(5)+2(10)(5)=300 \mathrm{~cm}^{2}$.
- This method doesn't tell you if it's a minimum or a maximum! Use your intuition (in this case, there is a minimum area that can encompass the volume, but not a maximum) or test nearby values.

Example: Rectangular box

Method 2: Lagrange Multipliers

This method doesn't tell you if it's a minimum or a maximum!

- Use your intuition (in this case, there is a minimum area that can encompass the volume, but not a maximum) or test nearby values.
- Surface $x y z=500$ (with $x, y, z>0$) is not bounded, so Extreme Value Theorem doesn't apply. No guarantee there's a global min/max in the region.
- Only one candidate point, so we can't compare candidates.
- Pages 197-201 extend the $2^{\text {nd }}$ derivatives test to constraint equations, but it uses Linear Algebra (Math 18).

Example: Function of 10 variables

Find 10 positive \#'s whose sum is 1000 and whose product is maximized:
Maximize $\quad f\left(x_{1}, \ldots, x_{10}\right)=x_{1} x_{2} \ldots x_{10}$

$$
\nabla f=\left\langle\frac{f}{x_{1}}, \ldots, \frac{f}{x_{10}}\right\rangle
$$

Subject to

$$
g\left(x_{1}, \ldots, x_{10}\right)=x_{1}+\cdots+x_{10}=1000
$$

$$
\nabla g=\langle 1, \ldots, 1\rangle
$$

- Solve $\nabla f=\lambda \nabla g: \quad \frac{f}{x_{1}}=\cdots=\frac{f}{x_{10}}=\lambda \cdot 1$

$$
x_{1}=\cdots=x_{10}
$$

- Combine with constraint $g=x_{1}+\cdots+x_{10}=1000$:

$$
10 x_{1}=1000 \text { so } x_{1}=\cdots=x_{10}=100
$$

- The product is $100^{10}=10^{20}$. This turns out to be the maximum.
- Minimum: as any of the variables approach 0 , the product approaches 0 , without reaching it. So, in the domain $x_{1}, \ldots, x_{10}>0$, the minimum does not exist.

Closest point on a plane to the origin

What point on the plane $x+2 y+z=4$ is closest to the origin?

- Physical intuition tells us there is a minimum but not a maximum.
- No max: plane has infinite extent, with points arbitrarily far away.
- Approaches: vector projections (Chapter 1.2), critical points (3.3), and Lagrange Multipliers (3.4).
- Generalization: Given a point A, find the closest point to A on surface $z=f(x, y)$.

Closest point on a plane to the origin

Method 1: Projection

What point on the plane $x+2 y+z=4$ is closest to the origin?

- Pick any point Q on the plane; let's use $Q=(1,1,1)$.
- Form the projection of $\vec{a}=\overrightarrow{O Q}=\langle 1,1,1\rangle$ along the normal vector $\vec{n}=\langle 1,2,1\rangle$ to get $\overrightarrow{O P}$, where P is the closest point:

$$
\overrightarrow{O P}=\frac{(\vec{a} \cdot \vec{n}) \vec{n}}{\|\vec{n}\|^{2}}=\frac{(1 \cdot 1+1 \cdot 2+1 \cdot 1) \vec{n}}{1^{2}+2^{2}+1^{2}}=\frac{4 \vec{n}}{6}=\left\langle\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right\rangle
$$

- Closest point is $P=O+\overrightarrow{O P}=\left(\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right)$.

Closest point on a plane to the origin

Method 2: Critical points

What point on the plane $x+2 y+z=4$ is closest to the origin?

- For (x, y, z) on the plane, the distance to the origin is

$$
f(x, y, z)=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

- This is minimized at the same place as its square:

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}
$$

- On the plane, $z=4-x-2 y$. So find (x, y) that minimize

$$
h(x, y)=x^{2}+y^{2}+(4-x-2 y)^{2}
$$

Then plug the solution(s) of (x, y) into $z=4-x-2 y$.

Closest point on a plane to the origin

Method 2: Critical points

What point on the plane $x+2 y+z=4$ is closest to the origin?

- Minimize $h(x, y)=x^{2}+y^{2}+(4-x-2 y)^{2}$.
- First derivatives:

$$
\begin{aligned}
& h_{x}=2 x-2(4-x-2 y)=4 x+4 y-8 \\
& h_{y}=2 y+2(-2)(4-x-2 y)=4 x+10 y-16
\end{aligned}
$$

- Critical points: solve $h_{x}=h_{y}=0$:

$$
\begin{array}{lll}
h_{x}=0 & \text { gives } & y=2-x \\
h_{y}=0 & \text { becomes } & 4 x+10(2-x)-16 \\
& & =4 x+20-10 x-16=-6 x+4=0 \\
& \text { so } & x=2 / 3 \text { and } y=2-2 / 3=4 / 3
\end{array}
$$

- This gives $z=4-x-2 y=4-(2 / 3)-2(4 / 3)=2 / 3$.
- The point is $\left(\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right)$.

Its distance to the origin is $\sqrt{\left(\frac{2}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}}=\frac{\sqrt{24}}{3}=\frac{2 \sqrt{6}}{3}$.

Closest point on a plane to the origin

Method 2: Critical points

2nd derivative test

$h(x, y)=x^{2}+y^{2}+(4-x-2 y)^{2}$

$$
\begin{aligned}
& h_{x}=4 x+4 y-8 \\
& h_{y}=4 x+10 y-16
\end{aligned}
$$

$$
h_{x x}=4 \quad h_{y y}=10 \quad h_{x y}=4
$$

$$
D=(4)(10)-4^{2}=24
$$

Since $D>0$ and $h_{x x}>0$, it's a local minimum.

Gradient diagram

The plane is split into four regions, according to the signs of h_{x} and h_{y}. h increases as we move away from $\left(\frac{2}{3}, \frac{4}{3}\right)$, so it's an absolute minimum.

Closest point on a plane to the origin

Method 3: Lagrange Multipliers

What point on the plane $z=4-x-2 y$ is closest to the origin?

- Rewrite this as a constraint function = constant: $x+2 y+z=4$
- Minimize $f(x, y, z)=x^{2}+y^{2}+z^{2} \quad$ (square of distance to origin) Subject to $g(x, y, z)=x+2 y+z=4 \quad$ (constraint: on plane)
- Solve $\nabla f=\lambda \nabla g$ and $x+2 y+z=4$:

$$
\begin{array}{rlrlrl}
\langle 2 x, 2 y, & 2 z\rangle & =\lambda\langle 1,2,1\rangle & & x+2 y+z=4 \\
2 x & =\lambda \cdot 1 & 2 y & =\lambda \cdot 2 & 2 z & =\lambda \cdot 1 \\
x & =\frac{\lambda}{2} & y & =\lambda & z=\frac{\lambda}{2} & \frac{\lambda}{2}+2 \lambda+\frac{\lambda}{2}=3 \lambda=4 \text { so } \lambda=\frac{4}{3} \\
x & =\frac{2}{3} & y & =\frac{4}{3} & z & =\frac{2}{3}
\end{array}
$$

- The closest point is $\left(\frac{2}{3}, \frac{4}{3}, \frac{2}{3}\right)$.

Its distance to the origin is $\sqrt{\left(\frac{2}{3}\right)^{2}+\left(\frac{4}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}}=\sqrt{\frac{24}{9}}=\frac{2 \sqrt{6}}{3}$.

Closest point on a surface to a given point

What point Q on the paraboloid $z=x^{2}+y^{2}$ is closest to $P=(1,2,0)$?

Closest point on a surface to a given point

What point Q on the paraboloid $z=x^{2}+y^{2}$ is closest to $P=(1,2,0)$?

- Minimize the square of the distance of P to $Q=(x, y, z)$

$$
f(x, y, z)=(x-1)^{2}+(y-2)^{2}+(z-0)^{2}
$$

subject to the constraint

$$
g(x, y, z)=x^{2}+y^{2}-z=0
$$

- $\nabla f=\langle 2(x-1), 2(y-2), 2 z\rangle \quad \nabla g=\langle 2 x, 2 y,-1\rangle$
- Solve $\nabla f=\lambda \nabla g$ and $g(x, y, z)=0$ for x, y, z, λ :

$$
\begin{aligned}
2(x-1) & =\lambda(2 x) \quad 2(y-2)=\lambda(2 y) \quad 2 z=-\lambda \\
x^{2}+y^{2}-z & =0
\end{aligned}
$$

- Note $x \neq 0$ since the $1^{\text {st }}$ equation would be $-2=0$. Similarly, $y \neq 0$. So we may divide by x and y.
- The first three give $\lambda=1-\frac{1}{x}=1-\frac{2}{y}=-2 z \quad$ so $y=2 x$
- Constraint gives

$$
z=x^{2}+y^{2}=x^{2}+(2 x)^{2}=5 x^{2}
$$

Closest point on a surface to a given point

What point Q on the paraboloid $z=x^{2}+y^{2}$ is closest to $P=(1,2,0)$?

- So far, $y=2 x, \quad z=5 x^{2}, \quad$ and $\quad \lambda=1-\frac{1}{x}=1-\frac{2}{y}=-2 z$.
- Then $1-\frac{1}{x}=-2 z=-2\left(5 x^{2}\right)$ gives $1-\frac{1}{x}=-10 x^{2}$, so

$$
10 x^{3}+x-1=0
$$

- Solve exactly with the cubic equation or approximately with a numerical root finder.
https://en.wikipedia.org/wiki/Cubic_function\#Roots_of_a_cubic_function It has one real root (and two complex roots, which we discard):

$$
\begin{gathered}
x=\frac{\alpha}{30}-\frac{1}{\alpha} \approx 0.3930027 \quad \text { where } \alpha=\sqrt[3]{1350+30 \sqrt{2055}} \\
y=2 x \approx 0.7860055 \quad z=5 x^{2} \approx 0.7722557 \\
Q=\left(x, 2 x, 5 x^{2}\right) \approx(0.3930027,0.7860055,0.7722557)
\end{gathered}
$$

