Introduction to Multiple Integrals Chapters 5.1-5.2 and parts of 5.3-5.5

Prof. Tesler

Math 20C
Fall 2018

Indefinite integrals with multiple variables

- Consider

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+C
$$

- In the input,
- $d x$ says x is the integration variable.
- a is constant.
- In the result, C is a constant (does not depend on x).
- Applying $d / d x$ to the result gives back the integrand:

$$
\frac{d}{d x}\left(\frac{e^{a x}}{a}+C\right)=e^{a x}
$$

Indefinite integrals with multiple variables

- Let x, y, z be variables, and consider

$$
\int(2 x y+z) d z=2 x y z+\frac{z^{2}}{2}+C(x, y)
$$

- In the input:
- $d z$ says z is the integration variable.
- x, y are treated as constants while doing the integral.
- In the result:
- The integration "constant" does not depend on the integration variable z, but it might depend on the other variables x, y ! So it's a function, $C(x, y)$.
- Applying $\partial / \partial z$ to the result gives back the integrand:

$$
\frac{\partial}{\partial z}\left(2 x y z+\frac{z^{2}}{2}+C(x, y)\right)=2 x y+z
$$

- Note $\frac{\partial}{\partial z} C(x, y)=0$ for all functions of x and y.

Definite integrals with multiple variables

$$
\int_{a}^{b}(2 x y+z) d z=\left.\left(2 x y z+\frac{z^{2}}{2}\right)\right|_{z=a} ^{z=b}
$$

As a definite integral:

- The limits a, b may depend on the other variables, x and y.
- Specify limits as $z=a$ and $z=b$ instead of just a and b :

$$
\text { Don't do this: }\left.\quad\left(2 x y z+\frac{z^{2}}{2}\right)\right|_{a} ^{b}
$$

This is ambiguous; it doesn't say which of x, y, or z is the variable to set equal to a and to b.

- No need for the integration constant; it will cancel upon subtracting the antiderivatives at the two limits.

Definite integrals with multiple variables

Method 1: Antiderivative at upper limit minus at lower limit

$$
\begin{aligned}
\int_{0}^{x+y}(2 x y+z) d z & =\left.\left(2 x y z+\frac{z^{2}}{2}\right)\right|_{z=0} ^{z=x+y} \\
& =\left(2 x y(x+y)+\frac{(x+y)^{2}}{2}\right)-\left(2 x y(0)+\frac{0^{2}}{2}\right) \\
& =2 x y(x+y)+\frac{(x+y)^{2}}{2}
\end{aligned}
$$

Method 2: Subtract term-by-term

$$
\begin{aligned}
\int_{0}^{x+y}(2 x y+z) d z & =\left.\left(2 x y z+\frac{z^{2}}{2}\right)\right|_{z=0} ^{z=x+y} \\
& =2 x y((x+y)-0)+\frac{(x+y)^{2}-0^{2}}{2} \\
& =2 x y(x+y)+\frac{(x+y)^{2}}{2}
\end{aligned}
$$

Iterated integrals

This is a triple integral:

$$
\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{x+y} 2 x y d z d y d x
$$

- Group it like this, with parentheses:

$$
\int_{0}^{1}\left(\int_{x}^{2 x}\left(\int_{0}^{x+y} 2 x y d z\right) d y\right) d x
$$

- Match up integral signs \int and differentials (like $d x$) inside-to-out, not left-to-right:
- Inside integral: z goes from 0 to $x+y$
- Middle integral: y goes from x to $2 x$
- Outside integral: x goes from 0 to 1 .
- The limits for each variable can only depend on variables that are farther outside than they are:

$$
\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{h_{1}(x, y)}^{h_{2}(x, y)} f(x, y, z) d z d y d x
$$

Iterated integrals

$$
I=\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{x+y} 2 x y d z d y d x
$$

- Evaluate the inside integral:

$$
\int_{0}^{x+y} 2 x y d z=\left.(2 x y z)\right|_{z=0} ^{\mid=x+y}=2 x y((x+y)-0)=2 x y(x+y)
$$

- Replace the inside integral by what it evaluates to:

$$
I=\int_{0}^{1} \int_{x}^{2 x} 2 x y(x+y) d y d x
$$

- Now it's a double integral.
- Iterate! There's a new inside integral; repeat this until all integrals are evaluated.

Iterated integrals

$$
I=\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{x+y} 2 x y d z d y d x=\int_{0}^{1} \int_{x}^{2 x} 2 x y(x+y) d y d x
$$

- Iterate! The new inside integral is:

$$
\begin{aligned}
\int_{x}^{2 x} 2 x y(x+y) d y & =\int_{x}^{2 x}\left(2 x^{2} y+2 x y^{2}\right) d y \\
& =\left.\left(x^{2} y^{2}+\frac{2 x y^{3}}{3}\right)\right|_{y=x} ^{y=2 x} \\
& =x^{2}\left((2 x)^{2}-x^{2}\right)+\frac{2 x\left((2 x)^{3}-x^{3}\right)}{3} \\
& =x^{2}\left(3 x^{2}\right)+\frac{2 x\left(7 x^{3}\right)}{3}=3 x^{4}+\frac{14 x^{4}}{3}=\frac{23 x^{4}}{3}
\end{aligned}
$$

- Replace the inside integral by its evaluation: $I=\int_{0}^{1} \frac{23 x^{4}}{3} d x$

Iterated integrals

$$
I=\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{x+y} 2 x y d z d y d x=\cdots=\int_{0}^{1} \frac{23 x^{4}}{3} d x
$$

- Now it's down to a single integral.
- Finally,

$$
I=\left.\frac{23 x^{5}}{15}\right|_{x=0} ^{x=1}=\frac{23\left(1^{5}-0^{5}\right)}{15}=\frac{\mathbf{2 3}}{\mathbf{1 5}}
$$

- Going back to the original problem:

$$
\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{x+y} 2 x y d z d y d x=\frac{\mathbf{2 3}}{\mathbf{1 5}}
$$

Rectangle $D=[0,2] \times[1,3]$

- $D=[0,2] \times[1,3]$ is the filled-in rectangle in the $x y$ plane with

$$
0 \leqslant x \leqslant 2 \text { and } 1 \leqslant y \leqslant 3
$$

- Our book often uses R for rectangle and D for any 2-dimensional shape.
- This is called the Cartesian product. In set notation:

$$
\begin{aligned}
D & =[0,2] \times[1,3] \\
& =\{(x, y): 0 \leqslant x \leqslant 2 \text { and } 1 \leqslant y \leqslant 3\} \\
& =\{(x, y) \mid 0 \leqslant x \leqslant 2 \text { and } 1 \leqslant y \leqslant 3\}
\end{aligned}
$$

In set notation, some books use a colon : and others use a bar |

- $B=[a, b] \times[c, d] \times[e, f]$ is a filled-in box in 3D: $B=\{(x, y, z): a \leqslant x \leqslant b, \quad c \leqslant y \leqslant d, \quad$ and $\quad e \leqslant z \leqslant f\}$.

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

The coordinates on the plane $z=2 x+1$ above the corners of the rectangle D are

$$
\begin{array}{cc}
(x, y) & z \\
\hline(0,1) & 1 \\
(0,3) & 1 \\
(2,1) & 5 \\
(2,3) & 5
\end{array}
$$

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: split into pieces with known volumes

The plane $z=1$ splits the volume into two parts:

Bottom:	box	$2 \cdot 2 \cdot 1=4$
Top:	half a box	$(2 \cdot 2 \cdot 4) / 2=8$
Total:		12

If x, y, z are in cm , this is $12 \mathrm{~cm}^{3}$.

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: $d A=d y d x$

- Split up D by making a grid with closely spaced horizontal lines and closely spaced vertical lines.
- $d A$ is differential area. It can be $d A=d x d y$ or $d A=d y d x$.

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: $d A=d y d x$- Let D be a region in the $x y$ plane and let $f(x, y) \geqslant 0$ on D.
- Volume above patch at (x, y) and below $z=f(x, y)$ is (height)(differential area) $=f(x, y) d A$
- $\iint_{D} f(x, y) d A$ is the volume above D and below $z=f(x, y)$.
- For our current example,

$$
\iint_{D}(2 x+1) d A=\mathbf{1 2}
$$

- Use parentheses around $2 x+1$, since it's multiplied by $d A$.

Do not write it as

$$
\iint_{D} 2 x+1 d A
$$

Volume under $z=f(x, y)$ and above region D

Cavalieri's Principle

- Let E be a 3D region.
- Let $a \leqslant x \leqslant b$ be the range of x in E.
- Slice E at many values of x; e.g., set $\Delta x=(b-a) / n$, slice E at $x=a, a+\Delta x, a+2 \Delta x, \ldots, b$, and let $n \rightarrow \infty$.
- The infinitesimal cross-section at $x=x_{0}$ (called an x-slice) has area $A\left(x_{0}\right)$, thickness $d x$, and volume $A\left(x_{0}\right) d x$.
- The total volume of E is

$$
\left.V=\iint_{D} f(x, y) d A=\int_{a}^{b} \text { (area of cross-section at } x\right) d x=\int_{a}^{b} A(x) d x
$$

- This can also be done with y or z cross-sections.

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: $d A=d y d x$

- First, $d A=d y d x$. Set up the integral with x, y limits coming from D :

$$
\iint_{D}(2 x+1) d A=\int_{0}^{2} \int_{1}^{3}(2 x+1) d y d x
$$

- The slice at x has infinitesimal thickness $d x$, area $\int_{1}^{3}(2 x+1) d y$, and volume $\left(\int_{1}^{3}(2 x+1) d y\right) d x$.

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: $d A=d y d x$

$$
\iint_{D}(2 x+1) d A=\int_{0}^{2} \int_{1}^{3}(2 x+1) d y d x
$$

- Inside:

$$
\int_{1}^{3}(2 x+1) d y=\left.(2 x+1) y\right|_{y=1} ^{y=3}=(2 x+1)(3-1)=2(2 x+1)
$$

- Outside:

$$
\begin{aligned}
\int_{0}^{2} 2(2 x+1) d x=\left.2\left(x^{2}+x\right)\right|_{x=0} ^{x=2} & =2\left(\left(2^{2}-0^{2}\right)+(2-0)\right) \\
& =2(4+2)=\mathbf{1 2}
\end{aligned}
$$

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: $d A=d x d y$

- Next, $d A=d x d y$. Set up the integral with x, y limits coming from D :

$$
\iint_{D}(2 x+1) d A=\int_{1}^{3} \int_{0}^{2}(2 x+1) d x d y
$$

- The slice at y has infinitesimal thickness $d y$, area $\int_{0}^{2}(2 x+1) d x$, and volume $\left(\int_{0}^{2}(2 x+1) d x\right) d y$.

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: $d A=d x d y$

$$
\iint_{D}(2 x+1) d A=\int_{1}^{3} \int_{0}^{2}(2 x+1) d x d y
$$

- Inside:

$$
\int_{0}^{2}(2 x+1) d x=\left.\left(x^{2}+x\right)\right|_{x=0} ^{x=2}=\left(2^{2}-0^{2}\right)+(2-0)=6
$$

- Outside:

$$
\int_{1}^{3} 6 d y=\left.6 y\right|_{y=1} ^{y=3}=6(3-1)=\mathbf{1 2}
$$

Fubini's Theorem

Let $f(x, y)$ be a continuous function on a rectangle $R=[a, b] \times[c, d]$. Then

$$
\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

Separation of Variables

- Consider a double integral in this format:

$$
\int_{a}^{b} \int_{c}^{d} f(x) g(y) d y d x
$$

- Since the inside integral is over y, we can factor $f(x)$ out from it:

$$
=\int_{a}^{b} f(x)\left(\int_{c}^{d} g(y) d y\right) d x
$$

- The y integral has no x, so it's constant for the x integral; factor it out:

$$
=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{c}^{d} g(y) d y\right)
$$

- In the same way,

$$
\int_{c}^{d} \int_{a}^{b} f(x) g(y) d x d y=\left(\int_{a}^{b} f(x) d x\right)\left(\int_{c}^{d} g(y) d y\right)
$$

Volume under $z=2 x+1$ and above rectangle $D=[0,2] \times[1,3]$

 Method: Separation of Variables- $2 x+1$ factors as $(2 x+1) \cdot(1)$, so

$$
\int_{0}^{2} \int_{1}^{3}(2 x+1) d y d x=\left(\int_{0}^{2}(2 x+1) d x\right)\left(\int_{1}^{3} d y\right)=6 \cdot 2=\mathbf{1 2}
$$

since

$$
\begin{gathered}
\int_{0}^{2}(2 x+1) d x=\left.\left(x^{2}+x\right)\right|_{x=0} ^{x=2}=\left(2^{2}-0^{2}\right)+(2-0)=6 \\
\int_{1}^{3} d y=\left.y\right|_{y=1} ^{y=3}=3-1=2
\end{gathered}
$$

Average height

- The average of numbers $x_{1}, x_{2}, \ldots, x_{n}$ is

$$
\mu=\frac{x_{1}+\cdots+x_{n}}{n}
$$

and it satisfies

$$
\underbrace{x_{1}+\cdots+x_{n}}_{n \text { terms }}=n \mu=\underbrace{\mu+\cdots+\mu}_{n \text { terms }}
$$

- In the same way, the average μ of $f(x, y)$ on region D satisfies

$$
\iint_{D} f(x, y) d A=\iint_{D} \mu d A=\mu \iint_{D} d A
$$

so

$$
\mu=\frac{\iint_{D} f(x, y) d A}{\iint_{D} d A}=\frac{\text { Volume between } D \text { and } z=f(x, y)}{\text { Area of } D}
$$

- $\iint_{D} d A$ sums up differential area patches over D, giving the total area of D.

Average height

In our example, the average of $2 x+1$ over $D=[0,2] \times[1,3]$ is

$$
\frac{\iint_{D}(2 x+1) d A}{\text { Area }(D)}=\frac{12 \mathrm{~cm}^{3}}{4 \mathrm{~cm}^{2}}=\mathbf{3 ~ c m} .
$$

Mean Value Theorem

Mean Value Theorem

If f is continuous on region D and if D is bounded, closed, and connected, then there is a point P in D with $f(P)=\mu$ (the mean value).

- The mean value is a technical term for the average value.
- In our example $f(x, y)=2 x+1$ over the rectangle $D=[0,2] \times[1,3]$, the mean is $\mu=3$.
- Solving $f(x, y)=\mu$ gives $2 x+1=3$, so $x=(3-1) / 2=1$.
- Within D, all points on the line segment $x=1$ and $1 \leqslant y \leqslant 3$ give $f(1, y)=3$.

Density

- We spread butter on a piece of bread, $D=[0,2] \times[1,3]$.
- It's spread unevenly, giving varying density.
- Units: $x, y: \mathrm{cm}$ mass: g density: $\mathrm{g} / \mathrm{cm}^{2}$
- Density at $(x, y): \quad \rho(x, y)=2 x+1$
- Mass of the tiny patch at (x, y) :

$$
\rho(x, y) d A=(2 x+1) d A
$$

- Total mass of D :

$$
\iint_{D} \rho(x, y) d A=\iint_{D}(2 x+1) d A=12 \mathrm{~g}
$$

Average density $=\frac{\text { total mass }}{\text { total area }}=\frac{\iint_{D} \rho(x, y) d A}{\iint_{D} d A}=\frac{12 \mathrm{~g}}{4 \mathrm{~cm}^{2}}=3 \mathrm{~g} / \mathrm{cm}^{2}$

