2.3 Partial Derivatives, Linear Approximation

Prof. Tesler

Math 20C
Fall 2018

Partial derivatives

$$
f(x, y, z)=\sin \left(x^{2}+4 x y+3 z\right)
$$

- The partial derivative off with respect to x means
- Treat x as a variable.
- Treat the other variables (y and z) as constants.
- Differentiate as a function of x.
- Result:

$$
\frac{\partial f}{\partial x}=\cos \left(x^{2}+4 x y+3 z\right) \cdot(2 x+4 y)
$$

Notation

Partial derivatives
 One variable derivative

д: partial derivative symbol

$$
\begin{array}{ccc}
& \frac{\partial f}{\partial x} & \frac{d f}{d x} \\
& \frac{\partial}{\partial x} f & \frac{d}{d x} f \\
f_{x} & \text { or } f_{x}(x, y, z) & f^{\prime}(x)
\end{array}
$$

Partial derivatives

$$
f(x, y, z)=\sin \left(x^{2}+4 x y+3 z\right)
$$

- The partial derivative off with respect to y means
- Treat y as a variable.
- Treat the other variables (x and z) as constants.
- Differentiate as a function of y.
- Result:

$$
\frac{\partial f}{\partial y}=4 x \cos \left(x^{2}+4 x y+3 z\right)
$$

Partial derivatives

$$
f(x, y, z)=\sin \left(x^{2}+4 x y+3 z\right)
$$

- The partial derivative off with respect to z means
- Treat z as a variable.
- Treat the other variables (x and y) as constants.
- Differentiate as a function of z.
- Result:

$$
\frac{\partial f}{\partial z}=3 \cos \left(x^{2}+4 x y+3 z\right)
$$

Partial derivative at a point

One variable

- $f^{\prime}(10)$: Evaluate function $f^{\prime}(x)$ first, and then plug in value $x=10$.
- $f(x)=x^{3} \quad f^{\prime}(x)=3 x^{2} \quad f^{\prime}(10)=3(10)^{2}=300$

Multiple variables

$$
f(x, y)=x^{4} y
$$

- $f_{x}(1,2)$: Compute derivative as function: $f_{x}(x, y)=4 x^{3} y$ and then plug in $(x, y)=(1,2): \quad f_{x}(1,2)=4\left(1^{3}\right)(2)=8$
- Several notations for this:

$$
f_{x}(1,2)=\frac{\partial f}{\partial x}(1,2)=\left.\frac{\partial f}{\partial x}\right|_{x=1, y=2}=\left.\frac{\partial f}{\partial x}\right|_{(1,2)}
$$

- $f_{y}(x, y)=x^{4}$ and $f_{y}(1,2)=1^{4}=1$
- For $z=x^{4} y: \quad \frac{\partial z}{\partial x}=4 x^{3} y \quad \frac{\partial z}{\partial y}=x^{4}$
- For $z=x^{y}$, what are $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$?
- $\frac{d}{d x}\left(x^{3}\right)=3 x^{2}$

$$
\frac{\partial z}{\partial x}=y \cdot x^{y-1}
$$

- $\frac{d}{d y}\left(3^{y}\right)=3^{y} \ln 3$

$$
\frac{\partial z}{\partial y}=x^{y} \ln (x)
$$

Gradient

- The gradient of $f(x, y)$ is

$$
\nabla f=\nabla f(x, y)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle=\frac{\partial f}{\partial x} \hat{\imath}+\frac{\partial f}{\partial y} \hat{\jmath}
$$

- For $f(x, y)=x^{2} y^{4}$, we get $\nabla f=\left\langle 2 x y^{4}, 4 x^{2} y^{3}\right\rangle$.
- At point $(x, y)=(1,10)$:

$$
\nabla f(1,10)=\left\langle 2 \cdot 1 \cdot 10^{4}, 4 \cdot 1^{2} \cdot 10^{3}\right\rangle=\langle 20000,4000\rangle
$$

- For a function of three variables:

$$
\nabla f=\nabla f(x, y, z)=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

This generalizes to any number of variables.

- Symbol " ∇ " is called Nabla. It's an upside down Greek letter Delta, Δ.

Formal definition of partial derivative

- Graph the surface $z=f(x, y)$.
- Consider point $P=(a, b, ?)$ on surface.
- $z=f(x, y)=f(a, b)$, so the point on the surface is $P=(a, b, f(a, b))$.

Formal definition of partial derivative

- $\frac{\partial f}{\partial x}$: Compute derivative treating x as a variable and y as a constant.
- $y=b=$ constant is a plane parallel to the $x z$ plane $(y=0)$.
- The graph of $z=f(x, b)$ with x varying and $y=b=$ constant gives the red curve on the surface.
- The tangent line in that plane has slope $f_{x}(a, b)$:

$$
y=b \quad \text { and } \quad z=f(a, b)+f_{x}(a, b) \cdot(x-a)
$$

Formal definition of partial derivative

- $\frac{\partial f}{\partial y}$: Compute derivative treating y as a variable and x as a constant.
- $x=a=$ constant is a plane parallel to the $y z$ plane $(x=0)$.
- The graph of $z=f(a, y)$ with y varying and $x=a=$ constant gives the green curve on the surface.
- The tangent line in that plane has slope $f_{y}(a, b)$:

$$
x=a \quad \text { and } \quad z=f(a, b)+f_{y}(a, b) \cdot(y-b)
$$

Formal definition of partial derivative

$$
f_{x}(a, b)=\text { rate of change of } f \text { w.r.t. } x \text { at }(a, b)
$$

$$
=\lim _{\Delta x \rightarrow 0} \frac{f(a+\Delta x, b)-f(a, b)}{\Delta x}=\lim _{x \rightarrow a} \frac{f(x, b)-f(a, b)}{x-a}
$$

$$
f_{y}(a, b)=\text { rate of change of } f \text { w.r.t. } y \text { at }(a, b)
$$

$$
=\lim _{\Delta y \rightarrow 0} \frac{f(a, b+\Delta y)-f(a, b)}{\Delta y}=\lim _{y \rightarrow b} \frac{f(a, y)-f(a, b)}{y-b}
$$

Tangent plane

- A tangent plane to a 3D surface $z=f(x, y)$ generalizes a tangent line to a 2D curve.
- It's a plane that just touches the surface at a given point. It approximates the function when (x, y) is near the starting point.

Tangent plane

- The tangent plane at point P contains both tangent lines.
- The formula of the tangent plane is:

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

- Holding $x=a$ constant gives the green tangent line, and holding $y=b$ constant gives the red tangent line.

Tangent plane - Vector formula

$z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)$

$$
=f(a, b)+\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot\langle x-a, y-b\rangle
$$

which gives an alternate formula

$$
z=f(a, b)+\nabla f(a, b) \cdot\langle x-a, y-b\rangle
$$

Technicalities for the tangent plane to exist

Graph for $9-\operatorname{sqrt}\left(x^{\wedge} 2+y^{\wedge} 2\right)$

Graph for 9-abs $(\mathrm{x}+\mathrm{y})-\mathrm{abs}(\mathrm{x}-\mathrm{y})$

- Left graph: no tangent plane at the top point. Right graph: no tangent plane at any point along the creases.
- Need $f(x, y)$ and derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$ to exist and be continuous at $(x, y)=(a, b)$, plus more technical conditions.

Example: $z=f(x, y)=x^{2}+4 y^{2}$

Find the equation of the tangent plane at $(a, b)=(1,2)$
Graph for $x^{\wedge} 2+4^{*} y^{\wedge} 2$

- Need to fill in z. At $(x, y)=(1,2), z=1^{2}+4\left(2^{2}\right)=17$.
- Find the tangent plane at $(1,2,17)$.

Example: $z=f(x, y)=x^{2}+4 y^{2}$

Find the equation of the tangent plane at $(1,2,17)$

Slopes

$$
\begin{array}{lll}
f(x, y)=x^{2}+4 y^{2} & f_{x}(x, y)=2 x & f_{y}(x, y)=8 y \\
f(1,2)=1^{2}+4\left(2^{2}\right)=17 & f_{x}(1,2)=2(1)=2 & f_{y}(1,2)=8(2)=16
\end{array}
$$

Tangent plane at $(a, b, f(a, b))=(1,2,17)$

$$
\begin{gathered}
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
\text { or } z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b) \\
z=\mathbf{1 7}+\mathbf{2}(\boldsymbol{x}-\mathbf{1})+\mathbf{1 6}(\boldsymbol{y}-\mathbf{2})
\end{gathered}
$$

Other ways to write tangent plane formula

$$
z=17+2(x-1)+16(y-2)
$$

As a function

$$
L(x, y)=17+2(x-1)+16(y-2)
$$

- $f(x, y)$ is approximated by the tangent plane near the starting point:

$$
\underbrace{f(x, y)}_{z \text { on surface }} \approx \underbrace{L(x, y)}_{z \text { on tangent plane }} \text { when }(x, y) \approx(1,2)
$$

- This is called local linearity.

Other ways to write tangent plane formula

$$
z=17+2(x-1)+16(y-2)
$$

Surface:

$$
z=f(x, y)=x^{2}+4 y^{2}
$$

Tangent plane:

$$
z=L(x, y)=17+2(x-1)+16(y-2)
$$

Other ways to write tangent plane formula

$$
z=17+2(x-1)+16(y-2)
$$

In terms of changes in x, y, z

$$
\begin{gathered}
z-17=2(x-1)+16(y-2) \\
\Delta z=\mathbf{2} \Delta \boldsymbol{x}+\mathbf{1 6 \Delta y}
\end{gathered}
$$

where

$$
\begin{array}{ll}
\Delta x=x-a & =x-1 \\
\Delta y=y-b & =y-2 \\
\Delta z=z-f(a, b) & =z-17
\end{array}
$$

General formula

$$
\begin{aligned}
\Delta z & =f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y \\
& =\frac{\partial f}{\partial x}(a, b) \Delta x+\frac{\partial f}{\partial y}(a, b) \Delta y
\end{aligned}
$$

Other ways to write tangent plane formula

$$
z=17+2(x-1)+16(y-2)
$$

Vector version

- $f(x, y)=x^{2}+4 y^{2}$ has $\nabla f(x, y)=\langle 2 x, 8 y\rangle$
- $\nabla f(1,2)=\langle 2(1), 8(2)\rangle=\langle 2,16\rangle$

$$
\begin{gathered}
z=f(a, b)+\nabla f(a, b) \cdot\langle x-a, y-b\rangle \\
z=17+\nabla f(1,2) \cdot\langle x-1, y-2\rangle \\
z=\mathbf{1 7}+\langle\mathbf{2}, \mathbf{1 6}\rangle \cdot\langle\boldsymbol{x}-\mathbf{1}, \boldsymbol{y}-\mathbf{2}\rangle
\end{gathered}
$$

Vector version with changes in variables

$$
\begin{aligned}
\Delta z & =\nabla f(a, b) \cdot\langle\Delta x, \Delta y\rangle \\
\Delta z & =\langle\mathbf{2}, \mathbf{1 6}\rangle \cdot\langle\Delta \boldsymbol{x}, \Delta \boldsymbol{y}\rangle
\end{aligned}
$$

where $\quad \Delta x=x-1, \quad \Delta y=y-2, \quad \Delta z=z-17$.

Example: Volume of a cylinder

- Consider the volume of a cylinder of radius r and height h :

$$
V(r, h)=\pi r^{2} h
$$

- Measurements:

$$
\begin{aligned}
& r=1 \pm .01 \mathrm{~cm} \\
& h=2 \pm .04 \mathrm{~cm}
\end{aligned}
$$

- Volume:

Approximate $V: \pi \cdot 1^{2} \cdot 2 \quad=2 \pi \mathrm{~cm}^{3}$
Low estimate: $\quad \pi \cdot(0.99)^{2} \cdot(1.96)=1.920996 \pi \mathrm{~cm}^{3}$
High estimate: $\pi \cdot(1.01)^{2} \cdot(2.04)=2.081004 \pi \mathrm{~cm}^{3}$

- The low and high estimates are about $(2 \pm .08) \pi \mathrm{cm}^{3}$.

Example: Volume of a cylinder

The linear approximation to $V(r, h)=\pi r^{2} h$ near point $(r, h)=(1,2)$:

$$
\begin{aligned}
& L(r+\Delta r, h+\Delta h)=V(r, h)+\frac{\partial V}{\partial r}(r, h) \Delta r+\frac{\partial V}{\partial h}(r, h) \Delta h \\
& =\pi r^{2} h+2 \pi r h \Delta r+\pi r^{2} \Delta h \\
& =\pi\left(1^{2}\right)(2)+2 \pi(1)(2) \Delta r+\pi(1)^{2} \Delta h \\
& =\quad 2 \pi+\quad 4 \pi \Delta r+\quad \pi \Delta h \\
& L(1+.01,2+.04)=2 \pi+4 \pi(.01)+\pi(.04)=2.08 \pi \\
& L(1-.01,2-.04)=2 \pi+4 \pi(-.01)+\pi(-.04)=1.92 \pi
\end{aligned}
$$

Example: Volume of a cylinder

Compare with the exact expansion of $V(r+\Delta r, h+\Delta h)$:

$$
\begin{aligned}
V(r+\Delta r, h+\Delta h) & =\pi(r+\Delta r)^{2}(h+\Delta h) \\
& =\pi\left(r^{2}+2 r \Delta r+(\Delta r)^{2}\right)(h+\Delta h)
\end{aligned}
$$

$0^{\text {th }} \operatorname{order}\left(\right.$ no Δ 's) is $V(r, h):=\pi\left(r^{2} h\right.$

$$
\begin{aligned}
&\left.1^{\text {st }} \text { order/linear (1 } \Delta\right):+2 r h \Delta r+r^{2} \Delta h \\
& 2^{\text {nd }} \text { order }(2 \Delta \text { 's }): \\
& 3^{\text {rd }} \operatorname{order}\left(3 \Delta \Delta^{\prime} \mathrm{s}\right): \\
& \hline 2 r(\Delta r)(\Delta h)+h(\Delta r)^{2} \\
&\left.\hline(\Delta r)^{2}(\Delta h)\right)
\end{aligned}
$$

The linear approximation matches the $0^{\text {th }}$ plus $1^{\text {st }}$ order terms:

$$
L(r+\Delta r, h+\Delta h)=\pi r^{2} h+2 \pi r h \Delta r+\pi r^{2} h \Delta h
$$

Example: Volume of a cylinder

Plug in $\quad r=1, \quad \Delta r=.01, \quad h=2, \quad \Delta h=.04:$

$$
\begin{array}{lll}
V(r+\Delta r, h+\Delta h) \\
0^{\text {th }} \text { order: }:=\pi\left(r^{2} h\right. & =\pi\left(1^{2} \cdot 2\right. \\
1^{\text {st }} \text { order: } & +2 r h \Delta r+r^{2} \Delta h & +2(1)(2)(.01)+1^{2}(.04) \\
2^{\text {nd }} \text { order: } & +2 r(\Delta r)(\Delta h)+h(\Delta r)^{2} & +2(1)(.01)(.04)+2(.01)^{2} \\
3^{\text {rd }} \text { order: } & \left.+(\Delta r)^{2}(\Delta h)\right) & \left.+(.01)^{2}(.04)\right)
\end{array}
$$

Example: Volume of a cylinder

Plug in (a) $r=1, \quad \Delta r=.01, \quad h=2, \quad \Delta h=.04, \quad$ or (b) $\Delta r=-.01$ and $\Delta h=-.04$:
$V(r+\Delta r, h+\Delta h)$
$0^{\text {th }}$ order: $=\pi\left(r^{2} h \quad=2 \pi\right.$
$1^{\text {st }}$ order: $\quad+2 r h \Delta r+r^{2} \Delta h$
$2^{\text {nd }}$ order:
$+2 r(\Delta r)(\Delta h)+h(\Delta r)^{2}+.001 \pi$ $\left.+(\Delta r)^{2}(\Delta h)\right)$
$3^{\text {rd }}$ order:
$\pm .000004 \pi$
(a) 2.081004π
(b) 1.920996π

Including the $0^{\text {th }}$ and $1^{\text {st }}$ order terms gives the linear approximation. Including all terms gives the exact value.

Linear approximation with more variables

- Four positive real numbers below 50 are rounded to one decimal place and multiplied together. Estimate the maximum error.

$$
u=f(w, x, y, z)=w x y z \quad f: \mathbb{R}^{4} \rightarrow \mathbb{R}
$$

- Rounding gives an error of up to ± 0.05 in each variable.
- Estimated change in u due to changes in w, x, y, z :

$$
\begin{aligned}
\Delta u & =\frac{\partial u}{\partial w} \Delta w+\frac{\partial u}{\partial x} \Delta x+\frac{\partial u}{\partial y} \Delta y+\frac{\partial u}{\partial z} \Delta z=\nabla f \cdot\langle\Delta w, \Delta x, \Delta y, \Delta z\rangle \\
& =x y z \Delta w+w y z \Delta x+w x z \Delta y+w x y \Delta z
\end{aligned}
$$

- Upper bound on error: $w=x=y=z=50, \quad \Delta w=\Delta x=\Delta y=\Delta z=.05$:

$$
\Delta u=4(50)^{3}(.05)=25000
$$

- The actual largest error is at $w=x=y=z=49.95$ rounded up to 50 :

$$
50^{4}-(49.95)^{4} \approx 24962.525
$$

Derivative matrix

Consider $f(x, y)=\left\langle x^{2} y, e^{x^{2}}, y\right\rangle \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$

- Break it into three functions:

$$
f_{1}(x, y)=x^{2} y \quad f_{2}(x, y)=e^{x^{2}} \quad f_{3}(x, y)=y
$$

- The matrix of partial derivatives is

$$
D f(x, y)=\left[\begin{array}{c}
\nabla f_{1} \\
\nabla f_{2} \\
\nabla f_{3}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} \\
\frac{\partial f_{3}}{\partial x} & \frac{\partial f_{3}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
2 x y & x^{2} \\
2 x e^{x^{2}} & 0 \\
0 & 1
\end{array}\right] \quad D f(1,2)=\left[\begin{array}{cc}
4 & 1 \\
2 e & 0 \\
0 & 1
\end{array}\right]
$$

- This is a " 3 by 2 matrix" (3×2) :

3 rows (one per output function)
2 columns (one per input variable)

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has an $m \times n$ derivative matrix.

