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Partial derivatives

f (x, y, z) = sin(x2 + 4xy + 3z)

The partial derivative of f with respect to x means
Treat x as a variable.
Treat the other variables (y and z) as constants.
Differentiate as a function of x.

Result:
∂f
∂x

= cos(x2 + 4xy + 3z) · (2x + 4y)

Notation
Partial derivatives One variable derivative

∂: partial derivative symbol d
∂f
∂x

df
dx

∂
∂x f d

dx f

fx or fx(x, y, z) f ′(x)
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Partial derivatives

f (x, y, z) = sin(x2 + 4xy + 3z)

The partial derivative of f with respect to y means
Treat y as a variable.
Treat the other variables (x and z) as constants.
Differentiate as a function of y.

Result:
∂f
∂y

= 4x cos(x2 + 4xy + 3z)
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Partial derivatives

f (x, y, z) = sin(x2 + 4xy + 3z)

The partial derivative of f with respect to z means
Treat z as a variable.
Treat the other variables (x and y) as constants.
Differentiate as a function of z.

Result:
∂f
∂z

= 3 cos(x2 + 4xy + 3z)
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Partial derivative at a point

One variable
f ′(10): Evaluate function f ′(x) first, and then plug in value x = 10.
f (x) = x3 f ′(x) = 3x2 f ′(10) = 3(10)2 = 300

Multiple variables

f (x, y) = x4y

fx(1, 2): Compute derivative as function: fx(x, y) = 4x3y
and then plug in (x, y) = (1, 2): fx(1, 2) = 4(13)(2) = 8

Several notations for this:

fx(1, 2) =
∂f
∂x

(1, 2) =
∂f
∂x

∣∣∣∣
x=1,y=2

=
∂f
∂x

∣∣∣∣
(1,2)

fy(x, y) = x4 and fy(1, 2) = 14 = 1

For z = x4y: ∂z
∂x = 4x3y ∂z

∂y = x4
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z = xy

For z = xy, what are
∂z
∂x

and
∂z
∂y

?

d
dx

(x3) = 3x2 ∂z
∂x

= y · xy−1

d
dy

(3y) = 3y ln 3
∂z
∂y

= xy ln(x)
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Gradient

The gradient of f (x, y) is

∇f = ∇f (x, y) =
〈
∂f
∂x

,
∂f
∂y

〉
=
∂f
∂x
ı̂+

∂f
∂y
̂

For f (x, y) = x2y4, we get ∇f =
〈
2xy4, 4x2y3

〉
.

At point (x, y) = (1, 10):

∇f (1, 10) =
〈
2 · 1 · 104, 4 · 12 · 103〉 = 〈20000, 4000〉

For a function of three variables:

∇f = ∇f (x, y, z) =
〈
∂f
∂x

,
∂f
∂y

,
∂f
∂z

〉
This generalizes to any number of variables.

Symbol “∇” is called Nabla.
It’s an upside down Greek letter Delta, ∆.
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Formal definition of partial derivative

(a,b,0)

(a,b,f(a,b))

x

y

z

Graph the surface z = f (x, y).

Consider point P = (a, b, ?) on surface.

z = f (x, y) = f (a, b), so the point on the surface is P = (a, b, f (a, b)).
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Formal definition of partial derivative

(a,b,0)

(a,b,f(a,b))

x

y

z

∂f
∂x : Compute derivative treating x as a variable and y as a constant.
y = b = constant is a plane parallel to the xz plane (y = 0).
The graph of z = f (x, b) with x varying and y = b = constant gives
the red curve on the surface.
The tangent line in that plane has slope fx(a, b):

y = b and z = f (a, b) + fx(a, b) · (x − a)
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Formal definition of partial derivative

(a,b,0)

(a,b,f(a,b))

x

y

z

∂f
∂y : Compute derivative treating y as a variable and x as a constant.
x = a = constant is a plane parallel to the yz plane (x = 0).
The graph of z = f (a, y) with y varying and x = a = constant gives
the green curve on the surface.
The tangent line in that plane has slope fy(a, b):

x = a and z = f (a, b) + fy(a, b) · (y − b)
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Formal definition of partial derivative

(a,b,0)

(a,b,f(a,b))

x

y

z

fx(a, b) = rate of change of f w.r.t. x at (a, b)

= lim
∆x→0

f (a+∆x,b)−f (a,b)
∆x = lim

x→a

f (x,b)−f (a,b)
x−a

fy(a, b) = rate of change of f w.r.t. y at (a, b)

= lim
∆y→0

f (a,b+∆y)−f (a,b)
∆y = lim

y→b

f (a,y)−f (a,b)
y−b
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Tangent plane

(a,b,0)

(a,b,f(a,b))

x

y

z

A tangent plane to a 3D surface z = f (x, y) generalizes a tangent
line to a 2D curve.

It’s a plane that just touches the surface at a given point.
It approximates the function when (x, y) is near the starting point.
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Tangent plane

(a,b,0)

(a,b,f(a,b))

x

y

z

The tangent plane at point P contains both tangent lines.
The formula of the tangent plane is:

z = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

Holding x = a constant gives the green tangent line, and
holding y = b constant gives the red tangent line.
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Tangent plane — Vector formula

(a,b,0)

(a,b,f(a,b))

x

y

z

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

= f (a, b) +
〈

fx(a, b), fy(a, b)
〉
· 〈x − a, y − b〉

which gives an alternate formula

z = f(a, b) +∇f(a, b) · 〈x − a, y − b〉
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Technicalities for the tangent plane to exist

Left graph: no tangent plane at the top point.
Right graph: no tangent plane at any point along the creases.
Need f (x, y) and derivatives fx(x, y) and fy(x, y) to exist and be
continuous at (x, y) = (a, b), plus more technical conditions.
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Example: z = f (x, y) = x2 + 4y2

Find the equation of the tangent plane at (a, b) = (1, 2)

Need to fill in z. At (x, y) = (1, 2), z = 12 + 4(22) = 17.
Find the tangent plane at (1, 2, 17).
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Example: z = f (x, y) = x2 + 4y2

Find the equation of the tangent plane at (1, 2, 17)

Slopes
f (x, y) = x2 + 4y2 fx(x, y) = 2x fy(x, y) = 8y

f (1, 2) = 12 + 4(22) = 17 fx(1, 2) = 2(1) = 2 fy(1, 2) = 8(2) = 16

Tangent plane at (a, b, f (a, b)) = (1, 2, 17)

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

or z = f (a, b) + ∂f
∂x(a, b)(x − a) + ∂f

∂y(a, b)(y − b)

z = 17 + 2(x − 1) + 16(y − 2)
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Other ways to write tangent plane formula
z = 17 + 2(x − 1) + 16(y − 2)

As a function

L(x, y) = 17 + 2 (x − 1) + 16 (y − 2)

f (x, y) is approximated by the tangent plane near the starting point:

f (x, y)︸   ︷︷   ︸
z on surface

≈ L(x, y)︸   ︷︷   ︸
z on tangent plane

when (x, y) ≈ (1, 2)

This is called local linearity .
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Other ways to write tangent plane formula
z = 17 + 2(x − 1) + 16(y − 2)
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Surface: z = f (x, y) = x2 + 4y2

Tangent plane: z = L(x, y) = 17 + 2(x − 1) + 16(y − 2)
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Other ways to write tangent plane formula
z = 17 + 2(x − 1) + 16(y − 2)

In terms of changes in x, y, z

z − 17 = 2(x − 1) + 16(y − 2)

∆z = 2 ∆x + 16 ∆y

where ∆x = x − a = x − 1
∆y = y − b = y − 2
∆z = z − f (a, b) = z − 17

General formula
∆z= fx(a, b)∆x + fy(a, b)∆y

= ∂f
∂x(a, b)∆x + ∂f

∂y(a, b)∆y
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Other ways to write tangent plane formula
z = 17 + 2(x − 1) + 16(y − 2)

Vector version
f (x, y) = x2 + 4y2 has ∇f (x, y) = 〈2x, 8y〉
∇f (1, 2) = 〈2(1), 8(2)〉 = 〈2, 16〉

z = f (a, b) +∇f (a, b) · 〈x − a, y − b〉
z = 17 +∇f (1, 2) · 〈x − 1, y − 2〉

z = 17 + 〈2, 16〉 · 〈x − 1, y − 2〉

Vector version with changes in variables

∆z = ∇f (a, b) · 〈∆x,∆y〉

∆z = 〈2, 16〉 · 〈∆x,∆y〉

where ∆x = x − 1, ∆y = y − 2, ∆z = z − 17.
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Example: Volume of a cylinder

Consider the volume of a cylinder of radius r
and height h:

V(r, h) = πr2h

r

h

Measurements:
r = 1± .01 cm
h = 2± .04 cm

Volume:
Approximate V: π · 12 · 2 = 2π cm3

Low estimate: π · (0.99)2 · (1.96) = 1.920996π cm3

High estimate: π · (1.01)2 · (2.04) = 2.081004π cm3

The low and high estimates are about (2± .08)π cm3.
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Example: Volume of a cylinder

The linear approximation to V(r, h) = πr2h near point (r, h) = (1, 2):

L(r + ∆r, h + ∆h) = V(r, h) +
∂V
∂r

(r, h)∆r +
∂V
∂h

(r, h)∆h

= πr2h + 2πrh ∆r + πr2 ∆h

= π(12)(2) + 2π(1)(2) ∆r + π(1)2 ∆h

= 2π + 4π ∆r + π ∆h

L(1 + .01, 2 + .04) = 2π+ 4π(.01) + π(.04) = 2.08π

L(1 − .01, 2 − .04) = 2π+ 4π(−.01) + π(−.04) = 1.92π
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Example: Volume of a cylinder

Compare with the exact expansion of V(r + ∆r, h + ∆h):

V(r + ∆r, h + ∆h) = π(r + ∆r)2(h + ∆h)

= π(r2 + 2r∆r + (∆r)2)(h + ∆h)

0th order (no ∆’s) is V(r, h): = π
(

r2h

1st order/linear (1 ∆): + 2rh∆r + r2∆h

2nd order (2 ∆’s): + 2r(∆r)(∆h) + h(∆r)2

3rd order (3 ∆’s): + (∆r)2(∆h)
)

The linear approximation matches the 0th plus 1st order terms:

L(r + ∆r, h + ∆h) = πr2h + 2πrh ∆r + πr2h ∆h
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Example: Volume of a cylinder

Plug in r = 1, ∆r = .01, h = 2, ∆h = .04:

V(r + ∆r, h + ∆h)

0th order: = π
(

r2h = π
(

12 · 2

1st order: + 2rh∆r + r2∆h + 2(1)(2) (.01) + 12 (.04)

2nd order: + 2r(∆r)(∆h) + h(∆r)2 + 2(1)(.01)(.04) + 2(.01)2

3rd order: + (∆r)2(∆h)
)

+ (.01)2(.04)
)
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Example: Volume of a cylinder

Plug in (a) r = 1, ∆r = .01, h = 2, ∆h = .04, or
(b) ∆r = −.01 and ∆h = −.04:

V(r + ∆r, h + ∆h)

0th order: = π
(

r2h = 2π

1st order: + 2rh∆r + r2∆h ± .08π

2nd order: + 2r(∆r)(∆h) + h(∆r)2 + .001π

3rd order: + (∆r)2(∆h)
)

± .000004π

(a) 2.081004π

(b) 1.920996π

Including the 0th and 1st order terms gives the linear approximation.
Including all terms gives the exact value.
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Linear approximation with more variables

Four positive real numbers below 50 are rounded to one decimal
place and multiplied together. Estimate the maximum error.

u = f (w, x, y, z) = wxyz f : R4 → R

Rounding gives an error of up to ±0.05 in each variable.
Estimated change in u due to changes in w, x, y, z:

∆u =
∂u
∂w
∆w +

∂u
∂x
∆x +

∂u
∂y
∆y +

∂u
∂z
∆z = ∇f · 〈∆w,∆x,∆y,∆z〉

= xyz∆w + wyz∆x + wxz∆y + wxy∆z

Upper bound on error: w=x=y=z=50, ∆w=∆x=∆y=∆z= .05:

∆u = 4(50)3(.05) = 25000

The actual largest error is at w=x=y=z=49.95 rounded up to 50:

504 − (49.95)4 ≈ 24962.525
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Derivative matrix

Consider f (x, y) = 〈x2y, ex2
, y〉 f : R2 → R3

Break it into three functions:

f1(x, y) = x2y f2(x, y) = ex2
f3(x, y) = y

The matrix of partial derivatives is

Df (x, y) =


∇f1

∇f2

∇f3

 =



∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

∂f3
∂x

∂f3
∂y


=


2xy x2

2xex2
0

0 1

 Df (1, 2) =


4 1

2e 0

0 1


This is a “3 by 2 matrix” (3× 2):

3 rows (one per output function)
2 columns (one per input variable)

f : Rn → Rm has an m× n derivative matrix.
Prof. Tesler 2.3 Partial Derivatives, Linear Approximation Math 20C / Fall 2018 28 / 28


