2.3 Partial Derivatives, Linear Approximation

Prof. Tesler

Math 20C Fall 2018

Partial derivatives

$$f(x, y, z) = \sin(x^2 + 4xy + 3z)$$

- The *partial derivative of f with respect to x* means
 - Treat *x* as a variable.
 - Treat the other variables (y and z) as constants.
 - Differentiate as a function of *x*.

$$\frac{\partial f}{\partial x} = \cos(x^2 + 4xy + 3z) \cdot (2x + 4y)$$

Notation

Partial derivatives	One variable derivative
∂: partial derivative symbol	d
$\frac{\partial f}{\partial x}$	$\frac{df}{dx}$
$\frac{\partial}{\partial x}f$	$\frac{d}{dx}f$
f_x or $f_x(x, y, z)$	f'(x)

$$f(x, y, z) = \sin(x^2 + 4xy + 3z)$$

- The *partial derivative of f with respect to y* means
 - Treat *y* as a variable.
 - Treat the other variables (x and z) as constants.
 - Differentiate as a function of *y*.

Result:

$$\frac{\partial f}{\partial y} = 4x\cos(x^2 + 4xy + 3z)$$

$$f(x, y, z) = \sin(x^2 + 4xy + 3z)$$

- The *partial derivative of f with respect to z* means
 - Treat *z* as a variable.
 - Treat the other variables (*x* and *y*) as constants.
 - Differentiate as a function of *z*.

• Result:

$$\frac{\partial f}{\partial z} = 3\cos(x^2 + 4xy + 3z)$$

Partial derivative at a point

One variable

•
$$f'(10)$$
: Evaluate function $f'(x)$ first, and then plug in value $x = 10$.
• $f(x) = x^3$ $f'(x) = 3x^2$ $f'(10) = 3(10)^2 = 300$

Multiple variables

$$f(x, y) = x^4 y$$

• $f_x(1,2)$: Compute derivative as function: $f_x(x,y) = 4x^3y$ and then plug in (x,y) = (1,2): $f_x(1,2) = 4(1^3)(2) = 8$

• Several notations for this:

$$f_x(1,2) = \frac{\partial f}{\partial x}(1,2) = \frac{\partial f}{\partial x}\Big|_{x=1,y=2} = \frac{\partial f}{\partial x}\Big|_{(1,2)}$$

•
$$f_y(x, y) = x^4$$
 and $f_y(1, 2) = 1^4 = 1$

• For $z = x^4 y$: $\frac{\partial z}{\partial x} = 4x^3 y$ $\frac{\partial z}{\partial y} = x^4$

$$z = x^y$$

• For
$$z = x^y$$
, what are $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$?

•
$$\frac{d}{dx}(x^3) = 3x^2$$
 $\frac{\partial z}{\partial x} = y \cdot x^{y-1}$

•
$$\frac{d}{dy}(3^y) = 3^y \ln 3$$
 $\frac{\partial z}{\partial y} = x^y \ln(x)$

Gradient

• The *gradient* of f(x, y) is

$$\nabla f = \nabla f(x, y) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle = \frac{\partial f}{\partial x}\hat{\imath} + \frac{\partial f}{\partial y}\hat{\jmath}$$

• For $f(x, y) = x^2 y^4$, we get $\nabla f = \langle 2xy^4, 4x^2y^3 \rangle$.

• At point
$$(x, y) = (1, 10)$$
:
 $\nabla f(1, 10) = \langle 2 \cdot 1 \cdot 10^4, 4 \cdot 1^2 \cdot 10^3 \rangle = \langle 20000, 4000 \rangle$

• For a function of three variables:

$$\nabla f = \nabla f(x, y, z) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$

This generalizes to any number of variables.

Symbol "∇" is called *Nabla*.
 It's an upside down Greek letter Delta, Δ.

- Graph the surface z = f(x, y).
- Consider point P = (a, b, ?) on surface.

• z = f(x, y) = f(a, b), so the point on the surface is P = (a, b, f(a, b)).

- $\frac{\partial f}{\partial x}$: Compute derivative treating x as a variable and y as a constant.
- y = b = constant is a plane parallel to the *xz* plane (y = 0).
- The graph of z = f(x, b) with x varying and y = b = constant gives the red curve on the surface.
- The tangent line in that plane has slope $f_x(a, b)$:

$$y = b$$
 and $z = f(a, b) + f_x(a, b) \cdot (x - a)$

- $\frac{\partial f}{\partial y}$: Compute derivative treating y as a variable and x as a constant.
- x = a = constant is a plane parallel to the yz plane (x = 0).
- The graph of z = f(a, y) with y varying and x = a = constant gives the green curve on the surface.
- The tangent line in that plane has slope $f_y(a, b)$:

$$x = a$$
 and $z = f(a, b) + f_y(a, b) \cdot (y - b)$

 $f_x(a,b) = \text{rate of change of } f \text{ w.r.t. } x \text{ at } (a,b)$ $= \lim_{\Delta x \to 0} \frac{f(a + \Delta x, b) - f(a,b)}{\Delta x} \qquad = \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a}$

 $\begin{aligned} f_y(a,b) &= \text{rate of change of } f \text{ w.r.t. } y \text{ at } (a,b) \\ &= \lim_{\Delta y \to 0} \frac{f(a,b+\Delta y) - f(a,b)}{\Delta y} = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y-b} \end{aligned}$

Tangent plane

- A *tangent plane* to a 3D surface z = f(x, y) generalizes a *tangent line* to a 2D curve.
- It's a plane that just touches the surface at a given point.
 It approximates the function when (x, y) is near the starting point.

Tangent plane

- The tangent plane at point *P* contains both tangent lines.
- The formula of the tangent plane is:

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

• Holding x = a constant gives the green tangent line, and holding y = b constant gives the red tangent line.

Tangent plane — Vector formula

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

= $f(a,b) + \langle f_x(a,b), f_y(a,b) \rangle \cdot \langle x-a, y-b \rangle$

which gives an alternate formula

$$z = f(a,b) + \nabla f(a,b) \cdot \langle x - a, y - b \rangle$$

Technicalities for the tangent plane to exist

Graph for 9-abs(x+y)-abs(x-y)

Graph for 9-sqrt(x^2+y^2)

- Left graph: no tangent plane at the top point.
 Right graph: no tangent plane at any point along the creases.
- Need f(x, y) and derivatives $f_x(x, y)$ and $f_y(x, y)$ to exist and be continuous at (x, y) = (a, b), plus more technical conditions.

Example:
$$z = f(x, y) = x^2 + 4y^2$$

Find the equation of the tangent plane at (a, b) = (1, 2)

- Need to fill in z. At $(x, y) = (1, 2), z = 1^2 + 4(2^2) = 17$.
- Find the tangent plane at (1, 2, 17).

Example: $z = f(x, y) = x^2 + 4y^2$ Find the equation of the tangent plane at (1, 2, 17)

Slopes

$$f(x, y) = x^{2} + 4y^{2} \qquad f_{x}(x, y) = 2x \qquad f_{y}(x, y) = 8y$$

$$f(1, 2) = 1^{2} + 4(2^{2}) = 17 \qquad f_{x}(1, 2) = 2(1) = 2 \qquad f_{y}(1, 2) = 8(2) = 16$$

Tangent plane at (a, b, f(a, b)) = (1, 2, 17)

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

or $z = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$
 $z = 17 + 2(x - 1) + 16(y - 2)$

Prof. Tesler

As a function

$$L(x,y) = 17 + 2(x-1) + 16(y-2)$$

• f(x, y) is approximated by the tangent plane near the starting point:

 $\underbrace{f(x,y)}_{z \text{ on surface}} \approx \underbrace{L(x,y)}_{z \text{ on tangent plane}} \text{ when } (x,y) \approx (1,2)$

• This is called *local linearity*.

In terms of changes in *x*, *y*, *z*

$$z - 17 = 2(x - 1) + 16(y - 2)$$
$$\boxed{\Lambda z = 2 \Lambda x + 16 \Lambda y}$$

where

$$\Delta x = x - a = x - 1$$

$$\Delta y = y - b = y - 2$$

$$\Delta z = z - f(a, b) = z - 17$$

General formula

$$\Delta z = f_x(a, b) \Delta x + f_y(a, b) \Delta y$$
$$= \frac{\partial f}{\partial x}(a, b) \Delta x + \frac{\partial f}{\partial y}(a, b) \Delta y$$

Vector version

•
$$f(x, y) = x^2 + 4y^2$$
 has $\nabla f(x, y) = \langle 2x, 8y \rangle$

• $\nabla f(1,2) = \langle 2(1), 8(2) \rangle = \langle 2, 16 \rangle$

$$z = f(a, b) + \nabla f(a, b) \cdot \langle x - a, y - b \rangle$$
$$z = 17 + \nabla f(1, 2) \cdot \langle x - 1, y - 2 \rangle$$

$$z = 17 + \langle 2, 16 \rangle \cdot \langle x - 1, y - 2 \rangle$$

Vector version with changes in variables

$$\Delta z = \nabla f(a, b) \cdot \langle \Delta x, \Delta y \rangle$$

$$\Delta z = \langle 2, 16 \rangle \cdot \langle \Delta x, \Delta y \rangle$$

where $\Delta x = x - 1$, $\Delta y = y - 2$, $\Delta z = z - 17$.

• Consider the volume of a cylinder of radius *r* and height *h*:

$$V(r,h) = \pi r^2 h$$

Measurements:

 $r = 1 \pm .01 \text{ cm}$ $h = 2 \pm .04 \text{ cm}$

• Volume:

Approximate V: $\pi \cdot 1^2 \cdot 2$ $= 2\pi \text{ cm}^3$ Low estimate: $\pi \cdot (0.99)^2 \cdot (1.96)$ $= 1.920996 \pi \text{ cm}^3$ High estimate: $\pi \cdot (1.01)^2 \cdot (2.04)$ $= 2.081004 \pi \text{ cm}^3$

• The low and high estimates are about $(2 \pm .08)\pi$ cm³.

The linear approximation to $V(r, h) = \pi r^2 h$ near point (r, h) = (1, 2):

 $L(r + \Delta r, h + \Delta h) = V(r, h) + \frac{\partial V}{\partial r}(r, h) \Delta r + \frac{\partial V}{\partial h}(r, h) \Delta h$ $= \pi r^2 h + 2\pi r h \Delta r + \pi r^2 \Delta h$ $= \pi (1^2)(2) + 2\pi (1)(2) \Delta r + \pi (1)^2 \Delta h$ $= 2\pi + 4\pi \Delta r + \pi \Delta h$

 $L(1+.01, 2+.04) = 2\pi + 4\pi(.01) + \pi(.04) = 2.08\pi$ $L(1-.01, 2-.04) = 2\pi + 4\pi(-.01) + \pi(-.04) = 1.92\pi$

Compare with the exact expansion of $V(r + \Delta r, h + \Delta h)$:

$$V(r + \Delta r, h + \Delta h) = \pi (r + \Delta r)^{2} (h + \Delta h)$$

= $\pi (r^{2} + 2r \Delta r + (\Delta r)^{2}) (h + \Delta h)$
Oth order (no Δ 's) is $V(r, h)$: = $\pi (r^{2}h$
1st order/linear (1 Δ): + $2rh \Delta r + r^{2} \Delta h$
2nd order (2 Δ 's): + $2r(\Delta r)(\Delta h) + h(\Delta r)^{2}$
3rd order (3 Δ 's): + $(\Delta r)^{2}(\Delta h))$

The linear approximation matches the 0th plus 1st order terms:

$$L(r + \Delta r, h + \Delta h) = \pi r^2 h + 2\pi r h \Delta r + \pi r^2 h \Delta h$$

Plug in
$$r = 1$$
, $\Delta r = .01$, $h = 2$, $\Delta h = .04$:

$$V(r + \Delta r, h + \Delta h)$$
0th order: $= \pi \Big(r^2 h = \pi \Big(1^2 \cdot 2$
1st order: $+ 2rh \Delta r + r^2 \Delta h + 2(1)(2)(.01) + 1^2(.04)$
2nd order: $+ 2r(\Delta r)(\Delta h) + h(\Delta r)^2 + 2(1)(.01)(.04) + 2(.01)^2$
3rd order: $+ (\Delta r)^2(\Delta h) \Big) + (.01)^2(.04) \Big)$

Plug in (a)
$$r = 1$$
, $\Delta r = .01$, $h = 2$, $\Delta h = .04$, or
(b) $\Delta r = -.01$ and $\Delta h = -.04$:
 $V(r + \Delta r, h + \Delta h)$
 $0^{\text{th}} \text{ order:} = \pi \Big(r^2 h = 2\pi$
 $1^{\text{st}} \text{ order:} + 2rh \Delta r + r^2 \Delta h \pm .08\pi$
 $2^{\text{nd}} \text{ order:} + 2r(\Delta r)(\Delta h) + h(\Delta r)^2 + .001\pi$
 $3^{\text{rd}} \text{ order:} + (\Delta r)^2(\Delta h) \Big) = \frac{\pm .000004\pi}{(a) 2.081004\pi}$
(b) 1.920996π

Including the 0th and 1st order terms gives the linear approximation. Including all terms gives the exact value.

Linear approximation with more variables

• Four positive real numbers below 50 are rounded to one decimal place and multiplied together. Estimate the maximum error.

$$u = f(w, x, y, z) = wxyz$$
 $f : \mathbb{R}^4 \to \mathbb{R}$

• Rounding gives an error of up to ± 0.05 in each variable.

• Estimated change in *u* due to changes in *w*, *x*, *y*, *z*:

$$\Delta u = \frac{\partial u}{\partial w} \Delta w + \frac{\partial u}{\partial x} \Delta x + \frac{\partial u}{\partial y} \Delta y + \frac{\partial u}{\partial z} \Delta z = \nabla f \cdot \langle \Delta w, \Delta x, \Delta y, \Delta z \rangle$$
$$= xyz \Delta w + wyz \Delta x + wxz \Delta y + wxy \Delta z$$

• Upper bound on error: w = x = y = z = 50, $\Delta w = \Delta x = \Delta y = \Delta z = .05$:

$$\Delta u = 4(50)^3 (.05) = 25000$$

• The actual largest error is at w = x = y = z = 49.95 rounded up to 50: $50^4 - (49.95)^4 \approx 24962.525$

Derivative matrix

Consider $f(x, y) = \langle x^2 y, e^{x^2}, y \rangle$ $f : \mathbb{R}^2 \to \mathbb{R}^3$

• Break it into three functions:

$$f_1(x, y) = x^2 y$$
 $f_2(x, y) = e^{x^2}$ $f_3(x, y) = y$

• The matrix of partial derivatives is

$$Df(x,y) = \begin{bmatrix} \nabla f_1 \\ \nabla f_2 \\ \nabla f_3 \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} \end{bmatrix} = \begin{bmatrix} 2xy & x^2 \\ 2xe^{x^2} & 0 \\ 0 & 1 \end{bmatrix} \qquad Df(1,2) = \begin{bmatrix} 4 & 1 \\ 2e & 0 \\ 0 & 1 \end{bmatrix}$$

This is a "3 by 2 matrix" (3 × 2):
 3 rows (one per output function)
 2 columns (one per input variable)

• $f : \mathbb{R}^n \to \mathbb{R}^m$ has an $m \times n$ derivative matrix.