3.1 Iterated Partial Derivatives

Prof. Tesler

Math 20C Fall 2018

Prof. Tesler

• Take the partial derivative of $f(x, y) = x^2y^3$ with respect to x:

$$f_x(x,y) = 2xy^3$$

- This is also a function of *x* and *y*, and we can take another derivative with respect to either variable:
 - The *x* derivative of $f_x(x, y)$ is $(f_x)_x = f_{xx} = 2y^3$.
 - The y derivative of $f_x(x, y)$ is $(f_x)_y = f_{xy} = 6xy^2$.
 - f_{xx} and f_{xy} are each an *iterated partial derivative of second order*.
- The *y* derivative of the *x* derivative can also be written:

$$\frac{\partial}{\partial y}\frac{\partial}{\partial x}(x^2y^3) = \frac{\partial}{\partial y}(2xy^3) = 6xy^2 \quad \text{or} \quad \frac{\partial^2}{\partial y \partial x}(x^2y^3) = 6xy^2$$

Iterated Derivative Notations

• Let
$$f(x, y) = x^2 y^3$$
.

• There are two notations for partial derivatives, f_x and $\frac{\partial f}{\partial x}$.

Partial derivative of *f* with respect to *x* in each notation:

$$f_x = 2xy^3$$
 $\frac{\partial}{\partial x}f(x,y) = \frac{\partial f}{\partial x} = 2xy^3$

Partial derivative of that with respect to y:

$$(f_x)_y = f_{xy}, \qquad \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x}f\right) = \frac{\partial^2}{\partial y \partial x}f$$

so $f_{xy}(x, y) = 6xy^2 \qquad \frac{\partial^2 f}{\partial y \partial x} = 6xy^2$

Notice derivatives are listed in the opposite order in each notation.

- Notice derivatives are listed in the opposite order in each notation.
- In each notation, compute the derivatives in order from the one listed closest to f, to the one farthest from f:

$$f_{xyzzy} = \frac{\partial}{\partial y} \frac{\partial}{\partial z} \frac{\partial}{\partial z} \frac{\partial}{\partial y} \frac{\partial}{\partial x} f = \frac{\partial^5}{\partial y \partial z^2 \partial y \partial x} f = \frac{\partial^5 f}{\partial y \partial z^2 \partial y \partial x}$$

• Both notations say to take derivatives in the order *x*, *y*, *z*, *z*, *y*.

Mixed Partial Derivatives

$$f(x, y) = x^{2}y^{3}$$

$$f_{x} = 2xy^{3}$$

$$f_{y} = 3x^{2}y^{2}$$

$$f_{yx} = 2y^{3}$$

$$f_{yx} = 6xy^{2}$$

$$f_{yy} = 6x^{2}y$$

- A *mixed partial derivative* has derivatives with respect to two or more variables.
- f_{xy} and f_{yx} are mixed. f_{xx} and f_{yy} are not mixed.
- In this example, notice that $f_{xy} = f_{yx} = 6xy^2$. The order of the derivatives did not affect the result.

- A function f(x, y, z) is in *class* C^1 if f and its first derivatives f_x, f_y, f_z are defined and continuous.
- Class C^2 : f and all of its first derivatives (f_x, f_y, f_z) and second derivatives $(f_{xx}, f_{xy}, f_{xz}, f_{yx}, f_{yy}, f_{yz}, f_{zx}, f_{zy}, f_{zz})$ are defined and continuous.
- Class Cⁿ: f and all of its first, second, ..., nth derivatives are defined and continuous.

Clairaut's Theorem

If *f* and its first and second derivatives are defined and continuous (that is, *f* is class C^2), then $f_{xy} = f_{yx}$.

Example

The function $f(x, y) = x^2 y^3$ is C^2 (in fact, C^{∞}), and $f_{xy} = f_{yx} = 6xy^2$.

Example with higher order derivatives

 As long as f and all its derivatives are defined and continuous up to the required order, you can change the order of the derivatives.

• E.g., if f(x, y, z) is class C^5 , then

$$f_{xyzzy} = f_{xyyzz} \qquad \frac{\partial^5 f}{\partial y \,\partial z^2 \,\partial y \,\partial x} = \frac{\partial^5 f}{\partial x \,\partial y^2 \,\partial z^2}$$

Example

- Is there a C^2 function f(x, y) with $f_x = \cos(x + y)$ and $f_y = \ln(x + y)$?
- If so, Clairaut's Theorem says $f_{xy} = f_{yx}$.

•
$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \cos(x+y) = -\sin(x+y)$$

•
$$f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \ln(x+y) = \frac{1}{x+y}$$

• These don't agree, so there is no such function.

Example

The book, p. 158, 3.1#32, has an example where $f_{xy}(a, b) \neq f_{yx}(a, b)$ at a point (a, b) that has discontinuous 2nd derivatives.

Differential Equations

- Many laws of nature in Physics and Chemistry are expressed using *differential equations*.
- Ordinary Differential Equations (ODEs): You're given an equation in *x*, *y* and derivatives *y*', *y*'', The goal is to find a function *y* = *f*(*x*) satisfying the equation.
- ODEs were introduced in Math 20B.
 Solution methods will be covered in Math 20D.
 For now, we will just show how to verify a solution.

Example: Solve y' = 2y

- The answer turns out to be $y = Ce^{2x}$, where C is any constant.
- Verify this is a solution:
 - Left side: $y' = C(2e^{2x}) = 2Ce^{2x}$
 - Right side: $2y = 2Ce^{2x}$.
 - They're equal, so y' = 2y.

- A *partial differential equation* (PDE) has a function of multiple variables, and partial derivatives.
- The *wave equation* describes motion of waves.
- We'll study the *one dimensional wave equation:*

 $u_{tt} = b^2 u_{xx}$ (where *b* is constant)

• Goal is to solve for a function u = f(x, t) satisfying this equation.

Parameters (constant)

- A =amplitude
- L =length
- n = # bumps
- b =oscillation speed

Variables

- x = horizontal position
- t = time

$$u = f(x, t) = y$$
-coordinate

$$u_{tt} = b^2 u_{xx}$$
 or $\frac{\partial^2 u}{\partial t^2} = b^2 \frac{\partial^2 u}{\partial x^2}$

The solution is

 $u = A \sin(bkt) \sin(kx)$ where $k = n\pi/L$.

Verify the equation $u_{tt} = b^2 u_{xx}$:Left side: compute u_{tt} Right side: compute $b^2 u_{xx}$ $u_t = Abk \cos(bkt) \sin(kx)$ $u_x = Ak \sin(bkt) \cos(kx)$ $u_{tt} = -A(bk)^2 \sin(bkt) \sin(kx)$ $u_{xx} = -Ak^2 \sin(bkt) \sin(kx)$ $b^2 u_{xx} = -Ak^2 b^2 \sin(bkt) \sin(kx)$ The left and right sides are equal, so it's a solution.

- $A \sin(bkt)$ is the amplitude at time *t*. This varies between $\pm A$, so the maximum amplitude is *A*.
- $k = \frac{n\pi}{L}$ so $sin(kx) = sin(\frac{n\pi x}{L})$. So sin(kx) = 0 at $x = 0, \frac{L}{n}, \frac{2L}{n}, \dots, \frac{nL}{n}$. Hence those points are on the *x*-axis at all times *t*.

•
$$z = \sqrt{1 - x^2 - y^2}$$
 gives $z = f(x, y)$ explicitly.

- x² + y² + z² = 1 gives z in terms of x and y *implicitly*.
 For each x, y, one can solve for the value(s) of z where it holds.
- sin(xyz) = x + 2y + 3z cannot be solved explicitly for z.

• To compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ with an implicit equation:

- Assume z = f(x, y).
- For $\frac{\partial}{\partial x}$, treat x as a variable
 - y as a constant
 - *z* as a function of *x*, *y*

$x^2 + y^2 + z^2 = 1$. Find $\partial z / \partial x$.

• Left side:
$$\frac{\partial}{\partial x}(x^2 + y^2 + z^2) = 2x + 0 + 2z\frac{\partial z}{\partial x}$$

- **Right side:** $\frac{\partial}{\partial x}(1) = 0$
- **Combine:** $2x + 0 + 2z \frac{\partial z}{\partial x} = 0$

• Solve:
$$\frac{\partial z}{\partial x} = -x/z$$

$x^{2} + y^{\overline{2}} + z^{2} = 1$. Find $\partial z / \partial x$ at (x, y) = (1/3, 2/3).

• At (x, y) = (1/3, 2/3):

$$(\frac{1}{3})^2 + (\frac{2}{3})^2 + z^2 = 1$$
$$z^2 = 1 - \frac{1}{9} - \frac{4}{9} = \frac{4}{9}, \quad \text{so} \quad z = \pm \frac{2}{3}$$
At $(x, y, z) = (1/3, 2/3, 2/3)$:

$$\frac{\partial z}{\partial x} = -x/z = -\frac{1/3}{2/3} = \boxed{-\frac{1}{2}}$$

• At (x, y, z) = (1/3, 2/3, -2/3):

$$\frac{\partial z}{\partial x} = -x/z = -\frac{1/3}{-2/3} = \boxed{\frac{1}{2}}$$

$$\sin(xyz) = x + 2y + 3z$$

• Find $\frac{\partial z}{\partial x}$ in the above equation:

 $\begin{array}{ll} \frac{\partial}{\partial x} \text{ of left side:} & \cos(xyz) \cdot \left(yz + xy\frac{\partial z}{\partial x}\right) \\ \frac{\partial}{\partial x} \text{ of right side:} & 1 + 0 + 3\frac{\partial z}{\partial x} \\ \text{Combined:} & \cos(xyz) \cdot \left(yz + xy\frac{\partial z}{\partial x}\right) = 1 + 3\frac{\partial z}{\partial x} \end{array}$

• Solve this for $\partial z / \partial x$:

$$1 - yz\cos(xyz) = \frac{\partial z}{\partial x}(xy\cos(xyz) - 3)$$

$$\left| \frac{\partial z}{\partial x} = \frac{1 - yz \cos(xyz)}{xy \cos(xyz) - 3} \right|$$

 $\sin(xyz) = x + 2y + 3z$

- Find $\partial z / \partial x$ at (x, y) = (0, 0).
- At (x, y) = (0, 0), the equation becomes

$$sin(0) = 0 + 2(0) + 3z$$
 so $z = 0$.

• Plug numerical values of x, y, z into the formula for $\partial z/\partial x$:

$$\frac{\partial z}{\partial x} = \frac{1 - yz \cos(xyz)}{xy \cos(xyz) - 3} = \frac{1 - 0 \cos(0)}{0 \cos(0) - 3} = \frac{1}{-3} = \begin{bmatrix} -\frac{1}{3} \end{bmatrix}$$

 $\sin(xyz) = x + 2y + 3z$

- Find $\partial z / \partial x$ at (x, y) = (1, -.1).
- sin((1)(-.1)z) = 1 + 2(-.1) + 3z, so sin(-0.1z) = .8 + 3z.
- Use a numerical solver to get $z \approx -0.2580654401$.

• Plug x = 1, y = -.1, $z \approx -0.2580654401$ into formula for $\partial z / \partial x$:

$$\frac{\partial z}{\partial x} = \frac{1 - yz \cos(xyz)}{xy \cos(xyz) - 3} \approx \boxed{-0.3142621009}$$