3.1 Iterated Partial Derivatives

Prof. Tesler

Math 20C
Fall 2018

Higher Derivatives

- Take the partial derivative of $f(x, y)=x^{2} y^{3}$ with respect to x :

$$
f_{x}(x, y)=2 x y^{3}
$$

- This is also a function of x and y, and we can take another derivative with respect to either variable:
- The x derivative of $f_{x}(x, y)$ is $\left(f_{x}\right)_{x}=f_{x x}=2 y^{3}$.
- The y derivative of $f_{x}(x, y)$ is $\left(f_{x}\right)_{y}=f_{x y}=6 x y^{2}$.
- $f_{x x}$ and $f_{x y}$ are each an iterated partial derivative of second order.
- The y derivative of the x derivative can also be written:

$$
\frac{\partial}{\partial y} \frac{\partial}{\partial x}\left(x^{2} y^{3}\right)=\frac{\partial}{\partial y}\left(2 x y^{3}\right)=6 x y^{2} \quad \text { or } \quad \frac{\partial^{2}}{\partial y \partial x}\left(x^{2} y^{3}\right)=6 x y^{2}
$$

Iterated Derivative Notations

- Let $f(x, y)=x^{2} y^{3}$.
- There are two notations for partial derivatives, f_{x} and $\frac{\partial f}{\partial x}$.

Partial derivative of f with respect to \boldsymbol{x} in each notation:

$$
f_{x}=2 x y^{3} \quad \frac{\partial}{\partial x} f(x, y)=\frac{\partial f}{\partial x}=2 x y^{3}
$$

Partial derivative of that with respect to y :

$$
\begin{aligned}
\left(f_{x}\right)_{y}=f_{x y}, & \frac{\partial}{\partial y}\left(\frac{\partial}{\partial x} f\right) & =\frac{\partial^{2}}{\partial y \partial x} f \\
\text { so } f_{x y}(x, y)=6 x y^{2} & & =\frac{\partial^{2} f}{\partial y \partial x}=6 x y^{2}
\end{aligned}
$$

- Notice derivatives are listed in the opposite order in each notation.

Iterated Derivative Notations

- Notice derivatives are listed in the opposite order in each notation.
- In each notation, compute the derivatives in order from the one listed closest to f, to the one farthest from f :

$$
f_{x y z z y}=\frac{\partial}{\partial y} \frac{\partial}{\partial z} \frac{\partial}{\partial z} \frac{\partial}{\partial y} \frac{\partial}{\partial x} f=\frac{\partial^{5}}{\partial y \partial z^{2} \partial y \partial x} f=\frac{\partial^{5} f}{\partial y \partial z^{2} \partial y \partial x}
$$

- Both notations say to take derivatives in the order x, y, z, z, y.

Mixed Partial Derivatives

$$
\begin{aligned}
& f(x, y)=x^{2} y^{3} \\
& f_{x}=2 x y^{3} \\
& f_{y}=3 x^{2} y^{2} \\
& f_{x x}=2 y^{3} \\
& f_{y x}=6 x y^{2} \\
& f_{x y}=6 x y^{2} \\
& f_{y y}=6 x^{2} y
\end{aligned}
$$

- A mixed partial derivative has derivatives with respect to two or more variables.
- $f_{x y}$ and $f_{y x}$ are mixed.
$f_{x x}$ and $f_{y y}$ are not mixed.
- In this example, notice that $f_{x y}=f_{y x}=6 x y^{2}$.

The order of the derivatives did not affect the result.

Continuity Notation

- A function $f(x, y, z)$ is in class C^{1} if f and its first derivatives f_{x}, f_{y}, f_{z} are defined and continuous.
- Class $C^{2}: f$ and all of its first derivatives $\left(f_{x}, f_{y}, f_{z}\right)$ and second derivatives $\left(f_{x x}, f_{x y}, f_{x z}, f_{y x}, f_{y y}, f_{y z}, f_{z x}, f_{z y}, f_{z z}\right)$ are defined and continuous.
- Class $C^{n}: f$ and all of its first, second, $\ldots, n^{\text {th }}$ derivatives are defined and continuous.

Clairaut's Theorem

If f and its first and second derivatives are defined and continuous (that is, f is class C^{2}), then $f_{x y}=f_{y x}$.

Example

The function $f(x, y)=x^{2} y^{3}$ is C^{2} (in fact, C^{∞}), and $f_{x y}=f_{y x}=6 x y^{2}$.

Example with higher order derivatives

- As long as f and all its derivatives are defined and continuous up to the required order, you can change the order of the derivatives.
- E.g., if $f(x, y, z)$ is class C^{5}, then

$$
f_{x y z z y}=f_{x y y z z} \quad \frac{\partial^{5} f}{\partial y \partial z^{2} \partial y \partial x}=\frac{\partial^{5} f}{\partial x \partial y^{2} \partial z^{2}}
$$

Clairaut's Theorem

Example

- Is there a C^{2} function $f(x, y)$ with $f_{x}=\cos (x+y)$ and $f_{y}=\ln (x+y)$?
- If so, Clairaut's Theorem says $f_{x y}=f_{y x}$.
- $f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y} \cos (x+y)=-\sin (x+y)$
- $f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x} \ln (x+y)=\frac{1}{x+y}$
- These don't agree, so there is no such function.

Example

The book, p. 158, 3.1\#32, has an example where $f_{x y}(a, b) \neq f_{y x}(a, b)$ at a point (a, b) that has discontinuous $2^{\text {nd }}$ derivatives.

Differential Equations

- Many laws of nature in Physics and Chemistry are expressed using differential equations.
- Ordinary Differential Equations (ODEs):

You're given an equation in x, y and derivatives $y^{\prime}, y^{\prime \prime}, \ldots$.
The goal is to find a function $y=f(x)$ satisfying the equation.

- ODEs were introduced in Math 20B.

Solution methods will be covered in Math 20D.
For now, we will just show how to verify a solution.

Example: Solve $y^{\prime}=2 y$

- The answer turns out to be $y=C e^{2 x}$, where C is any constant.
- Verify this is a solution:
- Left side: $y^{\prime}=C\left(2 e^{2 x}\right)=2 C e^{2 x}$
- Right side: $2 y=2 C e^{2 x}$.
- They're equal, so $y^{\prime}=2 y$.

Wave Equation

- A partial differential equation (PDE) has a function of multiple variables, and partial derivatives.
- The wave equation describes motion of waves.
- We'll study the one dimensional wave equation:

$$
u_{t t}=b^{2} u_{x x} \quad(\text { where } b \text { is constant })
$$

- Goal is to solve for a function $u=f(x, t)$ satisfying this equation.

Wave Equation

Parameters (constant)

$A=$ amplitude
$L=$ length
$n=$ \# bumps
$b=$ oscillation speed
ecking orcen

Variables

(

$$
\begin{aligned}
x & =\text { horizontal position } \\
t & =\text { time } \\
u & =f(x, t)=y \text {-coordinate }
\end{aligned}
$$

Wave Equation

$$
u_{t t}=b^{2} u_{x x} \quad \text { or } \quad \frac{\partial^{2} u}{\partial t^{2}}=b^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

- The solution is

$$
u=A \sin (b k t) \sin (k x) \quad \text { where } \quad k=n \pi / L
$$

Verify the equation $u_{t t}=b^{2} u_{x x}$:

Left side: compute $u_{t t}$

$$
\begin{aligned}
u_{t} & =A b k \cos (b k t) \sin (k x) \\
u_{t t} & =-A(b k)^{2} \sin (b k t) \sin (k x)
\end{aligned}
$$

Right side: compute $\boldsymbol{b}^{\mathbf{2}} \boldsymbol{u}_{\boldsymbol{x x}}$

$$
\begin{aligned}
u_{x} & =A k \sin (b k t) \cos (k x) \\
u_{x x} & =-A k^{2} \sin (b k t) \sin (k x) \\
b^{2} u_{x x} & =-A k^{2} b^{2} \sin (b k t) \sin (k x)
\end{aligned}
$$

The left and right sides are equal, so it's a solution.

Wave Equation

- $A \sin (b k t)$ is the amplitude at time t.

This varies between $\pm A$, so the maximum amplitude is A.

- $k=\frac{n \pi}{L} \operatorname{sos} \sin (k x)=\sin \left(\frac{n \pi x}{L}\right)$.

So $\sin (k x)=0$ at $x=0, \frac{L}{n}, \frac{2 L}{n}, \ldots, \frac{n L}{n}$.
Hence those points are on the x-axis at all times t.

Implicit Equations and Partial Derivatives

- $z=\sqrt{1-x^{2}-y^{2}}$ gives $z=f(x, y)$ explicitly.
- $x^{2}+y^{2}+z^{2}=1$ gives z in terms of x and y implicitly.

For each x, y, one can solve for the value(s) of z where it holds.

- $\sin (x y z)=x+2 y+3 z$ cannot be solved explicitly for z.

Implicit Equations and Partial Derivatives

- To compute $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ with an implicit equation:
- Assume $z=f(x, y)$.
- For $\frac{\partial}{\partial x}$, treat x as a variable
y as a constant
z as a function of x, y

$x^{2}+y^{2}+z^{2}=1$. Find $\partial z / \partial x$.

- Left side: $\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)=2 x+0+2 z \frac{\partial z}{\partial x}$
- Right side: $\frac{\partial}{\partial x}(1)=0$
- Combine: $2 x+0+2 z \frac{\partial z}{\partial x}=0$
- Solve: $\frac{\partial z}{\partial x}=-x / z$

Implicit Equations and Partial Derivatives

$x^{2}+y^{2}+z^{2}=1$. Find $\partial z / \partial x$ at $(x, y)=(1 / 3,2 / 3)$.

- At $(x, y)=(1 / 3,2 / 3)$:

$$
\begin{gathered}
\left(\frac{1}{3}\right)^{2}+\left(\frac{2}{3}\right)^{2}+z^{2}=1 \\
z^{2}=1-\frac{1}{9}-\frac{4}{9}=\frac{4}{9}, \quad \text { so } \quad z= \pm \frac{2}{3}
\end{gathered}
$$

- At $(x, y, z)=(1 / 3,2 / 3,2 / 3)$:

$$
\frac{\partial z}{\partial x}=-x / z=-\frac{1 / 3}{2 / 3}=-\frac{\mathbf{1}}{\mathbf{2}}
$$

- At $(x, y, z)=(1 / 3,2 / 3,-2 / 3)$:

$$
\frac{\partial z}{\partial x}=-x / z=-\frac{1 / 3}{-2 / 3}=\frac{\mathbf{1}}{\mathbf{2}}
$$

Implicit Equations and Partial Derivatives

$$
\sin (x y z)=x+2 y+3 z
$$

- Find $\frac{\partial z}{\partial x}$ in the above equation:
$\frac{\partial}{\partial x}$ of left side: $\cos (x y z) \cdot\left(y z+x y \frac{\partial z}{\partial x}\right)$
$\frac{\partial}{\partial x}$ of right side: $\quad 1+0+3 \frac{\partial z}{\partial x}$
Combined: $\quad \cos (x y z) \cdot\left(y z+x y \frac{\partial z}{\partial x}\right)=1+3 \frac{\partial z}{\partial x}$
- Solve this for $\partial z / \partial x$:

$$
1-y z \cos (x y z)=\frac{\partial z}{\partial x}(x y \cos (x y z)-3)
$$

$$
\frac{\partial z}{\partial x}=\frac{1-y z \cos (x y z)}{x y \cos (x y z)-3}
$$

Implicit Equations and Partial Derivatives

$$
\sin (x y z)=x+2 y+3 z
$$

- Find $\partial z / \partial x$ at $(x, y)=(0,0)$.
- At $(x, y)=(0,0)$, the equation becomes

$$
\sin (0)=0+2(0)+3 z \quad \text { so } z=0
$$

- Plug numerical values of x, y, z into the formula for $\partial z / \partial x$:

$$
\frac{\partial z}{\partial x}=\frac{1-y z \cos (x y z)}{x y \cos (x y z)-3}=\frac{1-0 \cos (0)}{0 \cos (0)-3}=\frac{1}{-3}=-\frac{\mathbf{1}}{\mathbf{3}}
$$

Implicit Equations and Partial Derivatives

$$
\sin (x y z)=x+2 y+3 z
$$

- Find $\partial z / \partial x$ at $(x, y)=(1,-.1)$.
- $\sin ((1)(-.1) z)=1+2(-.1)+3 z$, so $\sin (-0.1 z)=.8+3 z$.
- Use a numerical solver to get $z \approx-0.2580654401$.
- Plug $x=1, y=-.1, z \approx-0.2580654401$ into formula for $\partial z / \partial x$:

$$
\frac{\partial z}{\partial x}=\frac{1-y z \cos (x y z)}{x y \cos (x y z)-3} \approx-\mathbf{0 . 3 1 4 2 6 2 1 0 0 9}
$$

