2.6 Gradients and Directional Derivatives

Prof. Tesler

Math 20C
Fall 2018

Hiking trail and chain rule

Altitude $\mathbf{z = f}(\mathrm{x}, \mathrm{y})$
x, y, z in feet, t in hours

- A mountain hấs altitude $z=f(x, y)$ above point (x, y).
- Plot a hiking trail $(x(t), y(t))$ on the contour map.

This gives altitude $z(t)=f(x(t), y(t))$, and 3D trail $(x(t), y(t), z(t))$.

- We studied using the chain rule to compute the hiker's vertical speed, $d z / d t$.

How steep are different cross-sections of a mountain?

Partial derivatives

Altitude $\mathbf{z = f}(\mathrm{x}, \mathrm{y})$
$\mathbf{x}, \mathbf{y}, \mathbf{z}$ in feet, t in hours

Slope at point $P=(x, y)=(a, b)$ when traveling east \rightarrow

- Hold y constant $(y=b)$ and vary x, giving $z=f(x, b)$.
- Get a 2D curve in the vertical plane $y=b$.
- Slope at P is $\frac{\partial z}{\partial x}=f_{x}(a, b)$.

Partial derivatives

Altitude $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$
x, y, z in feet, t in hours

Slope at point $P=(x, y)=(a, b)$ when traveling north \uparrow

- Hold x constant $(x=a)$ and vary y, giving $z=f(a, y)$.
- Get a 2D curve in the vertical plane $x=a$.
- Slope at P is $\frac{\partial z}{\partial y}=f_{y}(a, b)$.

Directional derivatives

Slope at $P=(x, y)=(a, b)$ when traveling on diagonal line

- On the 2D contour map, draw a diagonal line through P.
- On the 3D plot, this is a 2D curve on a vertical cross-section.
- What's the slope when traveling through P along this curve?

Directional derivatives

Altitude $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$
$\mathbf{x}, \mathbf{y}, \mathbf{z}$ in feet, \mathbf{t} in hours

- Let $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$ be a unit vector in the $x y$ plane.
- On the map, travel on the line through (a, b) with direction \vec{u} :

$$
\vec{r}(t)=\langle x(t), y(t)\rangle=\langle a, b\rangle+t \vec{u} .
$$

- Each (x, y) point gives a z coordinate via $z=f(x, y)$.

Directional derivatives

- Traveling on line $\vec{r}(t)=\langle x(t), y(t)\rangle=\langle a, b\rangle+t \vec{u}$:

Time	(x, y)	z
$t=0$	(a, b)	$f(a, b)$
$t=\Delta t$	$\left(a+u_{1} \Delta t, b+u_{2} \Delta t\right)$	$f\left(a+u_{1} \Delta t, b+u_{2} \Delta t\right)$

- Between times 0 and Δt, the change in altitude is

$$
\begin{aligned}
\Delta z & =f\left(a+u_{1} \Delta t, b+u_{2} \Delta t\right)-f(a, b) \\
& \approx f_{x}(a, b) u_{1} \Delta t+f_{y}(a, b) u_{2} \Delta t=\nabla f(a, b) \cdot \vec{u} \Delta t
\end{aligned}
$$

- The horizontal change (in the $x y$ plane) is

$$
\|\vec{u} \Delta t\|=\|\vec{u}\| \Delta t=1 \Delta t=\Delta t
$$

- The slope on the mountain at $(x, y)=(a, b)$ in that cross-section is

$$
\frac{\text { Vertical change }}{\text { Horizontal change }}=\frac{\Delta z}{\Delta t} \approx \nabla f(a, b) \cdot \vec{u}
$$

- As $\Delta t \rightarrow 0$, this gives the instantaneous rate of change:

$$
\nabla f(a, b) \cdot \vec{u}
$$

Directional derivatives - Second method

- Let $\vec{u}=\left\langle u_{1}, u_{2}\right\rangle$ be a unit vector, and travel on line $\vec{r}(t)=\langle a, b\rangle+t \vec{u}$.
- Time $t=0$ corresponds to point $P=(a, b)$.
- Use the chain rule to find the instantaneous slope at time $t=0$:

$$
\begin{aligned}
\left.\frac{d}{d t} f(\vec{r}(t))\right|_{t=0} & =\left.\frac{d}{d t} f(\langle a, b\rangle+t \vec{u})\right|_{t=0} \\
& \left.=\left(\nabla f \cdot \vec{r}^{\prime}(t)\right)\right)\left.\right|_{t=0} \\
& =\nabla f(a, b) \cdot \vec{r}^{\prime}(0) \\
& =\nabla f(a, b) \cdot \vec{u}
\end{aligned}
$$

Directional derivatives

The directional derivative of $f(\vec{x})$ in the direction \vec{u} (a unit vector) is

$$
\begin{aligned}
D_{\vec{u}} f(\vec{x}) & =\left.\frac{d}{d t} f(\vec{x}+t \vec{u})\right|_{t=0} & & \text { (useful theoretically) } \\
& =\nabla \boldsymbol{\nabla}(\overrightarrow{\boldsymbol{x}}) \cdot \overrightarrow{\boldsymbol{u}} & & \text { (easier for computations) }
\end{aligned}
$$

Notation warning

$D f$ for the derivative matrix and $D_{\vec{u}} f$ for directional derivative are completely different, even though the notations look similar.

Directional derivatives

The directional derivative of $f(\vec{x})$ in the direction \vec{u} (a unit vector) is

$$
D_{\vec{u}} f(\vec{x})=\nabla f(\vec{x}) \cdot \vec{u}
$$

Examples

- $D_{\hat{\imath}} f(a, b)=\nabla f(a, b) \cdot \hat{\imath}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot \hat{\imath}=f_{x}(a, b)$
- $D_{\hat{\jmath}} f(a, b)=\nabla f(a, b) \cdot \hat{\jmath}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot \hat{\jmath}=f_{y}(a, b)$

Be careful: \vec{u} must be a unit vector

- $D_{2 \hat{\imath}} f(a, b)=\nabla f(a, b) \cdot 2 \hat{\imath}=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \cdot 2 \hat{\imath}=2 f_{x}(a, b)$
- $\hat{\imath}$ and $2 \hat{\imath}$ have the same direction, but this is not the slope; it's off by a factor of 2 .

Example

Find the directional derivative of $f(x, y, z)=x^{2}-3 x y+z^{3}$ at the point $P=(1,2,3)$ in the direction towards $Q=(6,5,4)$.

We'll apply the formula $D_{\vec{u}} f=\vec{u} \cdot \nabla f$.

Gradient

- The gradient (as a function):

$$
\nabla f=\left\langle 2 x-3 y,-3 x, 3 z^{2}\right\rangle
$$

- The gradient at point P :

$$
\nabla f(1,2,3)=\left\langle 2(1)-3(2),-3(1), 3\left(3^{2}\right)\right\rangle=\langle-4,-3,27\rangle
$$

Example

Find the directional derivative of $f(x, y, z)=x^{2}-3 x y+z^{3}$ at the point $P=(1,2,3)$ in the direction towards $Q=(6,5,4)$.

Direction vector

- The vector from P to Q is

$$
\vec{v}=\overrightarrow{P Q}=\langle 5,3,1\rangle
$$

- However, this is not a unit vector. It has length

$$
\|\vec{v}\|=\sqrt{5^{2}+3^{2}+1^{2}}=\sqrt{25+9+1}=\sqrt{35}
$$

- Unit vector:

$$
\vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{\langle 5,3,1\rangle}{\sqrt{35}}
$$

Example

Find the directional derivative of $f(x, y, z)=x^{2}-3 x y+z^{3}$ at the point $P=(1,2,3)$ in the direction towards $Q=(6,5,4)$.

- So far:

$$
\nabla f(1,2,3)=\langle-4,-3,27\rangle \quad \vec{u}=\frac{\vec{v}}{\|\vec{v}\|}=\frac{\langle 5,3,1\rangle}{\sqrt{35}}
$$

- The directional derivative at this point:

$$
\begin{aligned}
D_{\vec{u}} f(1,2,3) & =\vec{u} \cdot \nabla f(1,2,3) \\
& =\frac{\langle 5,3,1\rangle}{\sqrt{35}} \cdot\langle-4,-3,27\rangle=\frac{5(-4)+3(-3)+1(27)}{\sqrt{35}} \\
& =-\frac{\mathbf{2}}{\sqrt{\mathbf{3 5}}}
\end{aligned}
$$

Possible values of $D_{\pi} f$

For a function $z=f(x, y)$ and a point $P=(a, b)$, what are the possible values of $D_{\vec{u}} f(a, b)$ as \vec{u} varies over all directions?

- $D_{\vec{u}} f=\vec{u} \cdot \nabla f=\|\vec{u}\|\|\nabla f\| \cos (\theta)$
- \vec{u} is a unit vector, so $\|\vec{u}\|=1$ and $D_{\vec{u}} f=\|\nabla f\| \cos (\theta)$.
- As \vec{u} varies, $\cos (\theta)$ varies between ± 1.
- So $D_{\vec{u}} f$ varies between $\pm\|\nabla f\|$.

Special directions

Contour map for part of a mountain with altitude $z=f(x, y)$

At point P, which direction \vec{u} is best for each scenario?

- The Power Hiker wants the steepest uphill path.
- The Power Skier wants the steepest downhill path.
- The Lazy Hiker wants to avoid any elevation change.

The Lazy Hiker

- To avoid elevation change, the lazy hiker walks along a level curve.
- At point P, the direction \vec{u} is tangent to the level curve, giving the two options shown above.
- No elevation change along this path, so

$$
D_{\vec{u}} f=0 \quad \text { so } \vec{u} \cdot \nabla f=0 \quad \text { so } \vec{u} \perp \nabla f
$$

- So at any point $P=(a, b)$, the gradient $\nabla f(a, b)$ is perpendicular to the level curve.

Direction of gradient vector

$\nabla f(a, b)$ is perpendicular to the contour through $P=(a, b)$. But which of these choices is it?

Power Hiker

$$
D_{\vec{u}} f=\vec{u} \cdot \nabla f=\|\vec{u}\|\|\nabla f\| \cos (\theta)=\|\nabla f\| \cos (\theta)
$$

- As \vec{u} varies, the maximum value of $D_{\vec{u}} f$ is $+\|\nabla f\|$.
- The maximum is when $\cos (\theta)=1$, so $\theta=0^{\circ}=0$ radians.
- Thus, \vec{u} is a unit vector in the same direction as ∇f, perpendicular to the level curve:

$$
\vec{u}=\nabla f /\|\nabla f\|
$$

- This is the direction of steepest ascent, or fastest increase.

Power Skier

$$
D_{\vec{u}} f=\vec{u} \cdot \nabla f=\|\vec{u}\|\|\nabla f\| \cos (\theta)=\|\nabla f\| \cos (\theta)
$$

- As \vec{u} varies, the minimum value of $D_{\vec{u}} f$ is $-\|\nabla f\|$.
- The minimum is when $\cos (\theta)=-1$, so $\theta=180^{\circ}=\pi$ radians.
- Thus, \vec{u} is a unit vector in the opposite direction of ∇f, still perpendicular to the level curve:

$$
\vec{u}=-\nabla f /\|\nabla f\|
$$

- This is the direction of steepest decent, or fastest decrease.

Direction of gradient vector

$\nabla f(a, b)$ is perpendicular to the contour through $P=(a, b)$. It points to the side where f is increasing.

Example: $f(x, y)=x^{2}+y^{2}+10$

What is the direction of steepest ascent at point $P=(-3,0)$?

- $\vec{u}=\nabla f /\|\nabla f\|$
- $\nabla f=\langle 2 x, 2 y\rangle$
- $\nabla f(-3,0)=\langle-6,0\rangle$, with length $\|\nabla f(-3,0)\|=6$, so

$$
\vec{u}=\frac{\langle-6,0\rangle}{6}=\langle-1,0\rangle
$$

Example: $f(x, y)=x^{2}+y^{2}+10$

Steepest ascent

$$
\vec{u}=\langle-1,0\rangle
$$

Steepest descent
$\vec{u}=-\langle-1,0\rangle=\langle 1,0\rangle$

Example: $f(x, y)=x^{2}+y^{2}+10$

Direction of contour

- $\nabla f(-3,0)=\langle-6,0\rangle$ is perpendicular to the contour at point $(-3,0)$.
- In 2D, the directions $\perp\langle a, b\rangle$ are multiples of $\langle-b, a\rangle$ (or $\langle b,-a\rangle$).
- So $\langle-0,-6\rangle$ is tangent to the contour.
- Unit vectors tangent to the contour are $\langle 0, \pm 1\rangle$.

Example: $f(x, y)=x^{2}+y^{2}+10$

Find the line tangent to the contour at $(-3,0)$

- Let \vec{r} be a position vector along the line.
- The tangent line is $\perp \nabla f(-3,0)=\langle-6,0\rangle$, so

$$
\begin{gathered}
\langle-6,0\rangle \cdot(\vec{r}-\langle-3,0\rangle)=0 \\
-6(x+3)+0(y-0)=0 \\
-6(x+3)=0
\end{gathered}
$$

$$
x=-3
$$

Topographic maps: Sign of $D_{\bar{u}} f$

Screenshots from GISsurfer, mappingsupport.com, ©OpenStreetMap

- \vec{a} points uphill, so $D_{\vec{a}} f>0$ at the point shown.
- \vec{b} is tangent to the contour, so $D_{\vec{b}} f=0$.
- \vec{c} points downhill, so $D_{\vec{c}} f<0$.

Topographic maps: Signs of f_{x} and f_{y}

Screenshots from GISsurfer, mappingsupport.com, ©OpenStreetMap

- Gradients at P, Q are perpendicular to the contours on the uphill side.
- At $P=(a, b): \quad f_{x}(a, b)<0$ and $f_{y}(a, b)<0$.
- At $Q=(c, d): \quad f_{x}(c, d)<0$ and $f_{y}(c, d)>0$.

Topographic maps: Steepest ascent path

Screenshots from GISsurfer, mappingsupport.com, ©()OpenStreetMap

- Path of steepest ascent: Draw a path starting at a point (yellow), continually adjusting direction to stay perpendicular to the contour in the uphill (increasing) direction.
- Path of steepest descent: Similar but going downhill.

Topographic maps: Maxima / Minima

Screenshots from GISsurfer, mappingsupport.com, ©OpenStreetMap

- Contour map has closed curves encircling the mountain peaks (where the function is maximum).
- The same would happen with minimums.

Topographic maps: Switchbacks

Screenshots from GISsurfer, mappingsupport.com, ©OpenStreetMap

- It's steepest where the contours are closest together.
- The official hiking trails have switchbacks in the steepest regions.

Level surface of $f(x, y, z)$

- For $z=f(x, y)$, contour maps have level curves $f(x, y)=k$. $\nabla f(a, b)$ is perpendicular to the level curve through (a, b).
- For $u=f(x, y, z)$, we get a level surface $f(x, y, z)=k$ instead of a level curve. $\nabla f(a, b, c)$ is perpendicular to the level surface through (a, b, c).

Example

- For $f(x, y, z)=x^{2}+y^{2}+z^{2}$, the level surface $f(x, y, z)=k$ is a sphere centered at $(0,0,0)$ of radius \sqrt{k}, provided $k \geqslant 0$.
- $\nabla f(x, y, z)=\langle 2 x, 2 y, 2 z\rangle$ is perpendicular to the sphere at (x, y, z).

Level surfaces of $f(x, y, z)=x^{2}+y^{2}+z^{2}$

Surfaces $f(x, y, z)=k$ shown for $k=1,2,3,4$ from inside to out

Level surface of $f(x, y, z)$

- Consider the surface

$$
x^{2}=2 x(y-z)+9
$$

- What is the point $(x, y, z)=(1,2,-)$?

Plug $x=1, y=2$ into the above equation, and solve for z :

$$
\begin{aligned}
1^{2} & =2(1)(2-z)+9 \\
1 & =4-2 z+9=13-2 z \\
2 z & =13-1=12 \\
z & =6
\end{aligned}
$$

Level surface of $f(x, y, z)$

- Find the tangent plane to surface $x^{2}=2 x(y-z)+9$ at $(x, y, z)=(1,2,6)$.
- Rearrange equation into $f(x, y, z)=$ constant:

$$
x^{2}-2 x(y-z)=9 \quad \text { so use } f(x, y, z)=x^{2}-2 x(y-z) .
$$

- Normal vector:

$$
\begin{aligned}
\nabla f & =\langle 2 x-2(y-z),-2 x, 2 x\rangle \\
\nabla f(1,2,6) & =\langle 2(1)-2(2-6),-2,2\rangle=\langle 10,-2,2\rangle
\end{aligned}
$$

- Tangent plane $\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0$:

$$
\langle 10,-2,2\rangle \cdot(\vec{r}-\langle 1,2,6\rangle)=0
$$

$$
10(x-1)-2(y-2)+2(z-6)=0
$$

$$
10 x-2 y+2 z=18
$$

Comparing tangent plane formulas from 2.3 vs. 2.6

2.3. Tangent plane to $z=f(x, y)$ at $\left(x_{0}, y_{0}, z_{0}\right)$

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

2.6. Tangent plane to $g(x, y, z)=k$ at $\left(x_{0}, y_{0}, z_{0}\right)$

$$
\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0 \text {, where } \vec{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle \text { and } \vec{n}=\nabla g\left(x_{0}, y_{0}, z_{0}\right) \text {. }
$$

This can be used even if you can't explicitly solve for z in terms of x, y.
Connection

$$
z=f(x, y) \quad \text { is equivalent to } \quad \underbrace{z-f(x, y)}_{\text {call this } g(x, y, z)}=0
$$

- $\nabla g(x, y, z)=\left\langle-f_{x},-f_{y}, 1\right\rangle$.
- $\vec{n}=\nabla g\left(x_{0}, y_{0}, z_{0}\right)=\left\langle-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1\right\rangle$
- The second formula $\vec{n} \cdot\left(\vec{r}-\vec{r}_{0}\right)=0$ expands as

$$
-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+1\left(z-z_{0}\right)=0
$$

which is equivalent to the first formula.

