2.5 Chain Rule for Multiple Variables

Prof. Tesler

Math 20C
Fall 2018

Review of the chain for functions of one variable

Chain rule

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

Example

$$
\frac{d}{d x} \sin \left(x^{2}\right)=\cos \left(x^{2}\right) \cdot(2 x)=2 x \cos \left(x^{2}\right)
$$

- This is the derivative of the outside function (evaluated at the inside function), times the derivative of the inside function.

Function composition

Composing functions of one variable

- Let $f(x)=\sin (x) \quad g(x)=x^{2}$
- The composition of these is the function $h=f \circ g$:

$$
h(x)=f(g(x))=\sin \left(x^{2}\right)
$$

- The notation $f \circ g$ is read as " f composed with g " or "the composition of f with g."

Function composition: Diagram

- A, B, C are sets. They can have different dimensions, e.g.,

$$
A \subseteq \mathbb{R}^{n} \quad B \subseteq \mathbb{R}^{m} \quad C \subseteq \mathbb{R}^{p}
$$

- f, g, and h are functions. Domains and codomains:

$$
\begin{aligned}
& f: B \rightarrow C \\
& g: A \rightarrow B \\
& h: A \rightarrow C
\end{aligned}
$$

Function composition: Multiple variables

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& f(x, y)=x^{2}+y \\
& \vec{r}: \mathbb{R} \rightarrow \mathbb{R}^{2} \\
& \vec{r}(t)=\langle x(t), y(t)\rangle \\
& =\langle 2 t+1,3 t-1\rangle \\
& f \circ \vec{r}: \mathbb{R} \rightarrow \mathbb{R} \\
& (f \circ \vec{r})(t)=f(\vec{r}(t)) \\
& =f(2 t+1,3 t-1) \\
& =(2 t+1)^{2}+(3 t-1) \\
& =4 t^{2}+7 t
\end{aligned}
$$

Derivative of $f(\vec{r}(t))$

- Notations: $\frac{d}{d t} f(\vec{r}(t))=\frac{d}{d t}(f \circ \vec{r})(t)=(f \circ \vec{r})^{\prime}(t)$
- Example: $(f \circ \vec{r})^{\prime}(t)=8 t+7$

$$
(f \circ \vec{r})^{\prime}(10)=8 \cdot 10+7=87
$$

Hiking trail

Altitude $\mathbf{z = f}(\mathrm{x}, \mathrm{y})$
x, y, z in feet, t in hours

- A mountain has altitude $z=f(x, y)$ above point (x, y).
- Plot a hiking trail $(x(t), y(t))$ on the contour map. This gives altitude $z(t)=f(x(t), y(t))$, and 3D trail $(x(t), y(t), z(t))$.
- What is the hiker's vertical speed, $d z / d t$?

What is $d z / d t=$ vertical speed of hiker?

- Let $\Delta t=$ very small change in time.
- The change in altitude is

$$
\begin{aligned}
\Delta z & =z(t+\Delta t)-z(t) \\
& \approx f_{x}(x, y) \Delta x+f_{y}(x, y) \Delta y \quad \text { Using the linear approximation }
\end{aligned}
$$

What is $d z / d t=$ vertical speed of hiker?

- Let $\Delta t=$ very small change in time.
- The change in altitude is

$$
\begin{aligned}
\Delta z & =z(t+\Delta t)-z(t) \\
& \approx f_{x}(x, y) \Delta x+f_{y}(x, y) \Delta y \quad \text { Using the linear approximation }
\end{aligned}
$$

- The vertical speed is approximately

$$
\frac{\Delta z}{\Delta t} \approx f_{x}(x, y) \frac{\Delta x}{\Delta t}+f_{y}(x, y) \frac{\Delta y}{\Delta t}
$$

- The instantaneous vertical speed is the limit of this as $\Delta t \rightarrow 0$:

$$
\frac{d z}{d t}=f_{x}(x, y) \frac{d x}{d t}+f_{y}(x, y) \frac{d y}{d t}
$$

Chain rule for paths

Our book: "First special case of chain rule"
Let $z=f(x, y)$, where x and y are functions of t.
So $z(t)=f(x(t), y(t))$. Then

$$
\frac{d z}{d t}=f_{x}(x, y) \frac{d x}{d t}+f_{y}(x, y) \frac{d y}{d t} \quad \text { or } \quad \frac{d z}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

Vector version

- Let $z=f(x, y)$ and $\vec{r}(t)=\langle x(t), y(t)\rangle$.
- $z(t)=f(x(t), y(t))$ becomes $z(t)=f(\vec{r}(t))$.
- The chain rule becomes

$$
\frac{d}{d t} f(\vec{r}(t)) \approx \nabla f \cdot \vec{r}^{\prime}(t)
$$

where $\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle$ and $\vec{r}^{\prime}(t)=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle$.

Chain rule example

$$
\begin{aligned}
\text { Let } z & =f(x, y)=x^{2}+y \\
\text { where } x & =2 t+1 \quad \text { and } \quad y=3 t-1
\end{aligned}
$$

Compute $d z / d t$.
First method: Substitution / Function composition

- Explicitly compute z as a function of t. Plug x and y into z, in terms of t :

$$
\begin{aligned}
z=x^{2}+y & =(2 t+1)^{2}+(3 t-1) \\
& =4 t^{2}+4 t+1+3 t-1 \\
& =4 t^{2}+7 t
\end{aligned}
$$

- Then compute $d z / d t$:

$$
\frac{d z}{d t}=8 t+7
$$

Chain rule example

$$
\text { Let } z=f(x, y)=x^{2}+y
$$

where $\quad x=2 t+1 \quad$ and $\quad y=3 t-1$. Compute $d z / d t$.

Second method: Chain rule

- Chain rule formula:

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} \\
& =2 x \cdot 2+1 \cdot 3=4 x+3
\end{aligned}
$$

- Plug in x, y in terms of t :

$$
=4(2 t+1)+3=8 t+4+3=8 \boldsymbol{t}+\mathbf{7}
$$

- This agrees with the first method.

Chain rule example

$$
\text { Let } z=f(x, y)=x^{2}+y
$$

where $x=2 t+1 \quad$ and $\quad y=3 t-1$. Compute $d z / d t$.

Vector version

- Convert from components $x(t), y(t)$ to position vector function $\vec{r}(t)$.

$$
\vec{r}(t)=\langle x(t), y(t)\rangle=\langle 2 t+1,3 t-1\rangle
$$

- Compute the derivative $d z / d t=(f \circ \vec{r})^{\prime}(t)$:

$$
\frac{d z}{d t}=\nabla f \cdot \vec{r}^{\prime}(t)=\langle 2 x, 1\rangle \cdot\langle 2,3\rangle=4 x+3=\cdots=8 t+7 \text { as before }
$$

Tree diagram of chain rule (not in our book)

```
z = f ( x , y ) \text { where } x \text { and } y \text { are functions of t, gives z=h(t)=f(x(t),y(t))}
```


$z=f(x, y)$ depends on two variables.
Use partial derivatives.
x and y each depend on one variable, t. Use ordinary derivative.

To compute $\frac{d z}{d t}$:

- There are two paths from z at the top to t 's at the bottom.
- Along each path, multiply the derivatives.
- Add the products over all paths.

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Tree diagram of chain rule

```
z=f(x,y),x=\mp@subsup{g}{1}{}(u,v),y=\mp@subsup{g}{2}{}(u,v), gives z=h(u,v)=f(g1(u,v),g}\mp@subsup{g}{2}{(u,v))
```


$z=f(x, y)$ depends on two variables.
Use partial derivatives.
x and y each depend on two variables. Use partial derivatives.

To compute $\frac{\partial z}{\partial u}$:

- Highlight the paths from the z at the top to the u 's at the bottom.
- Along each path, multiply the derivatives.
- Add the products over all paths.

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u}
$$

Tree diagram of chain rule

```
z=f(x,y),x=\mp@subsup{g}{1}{}(u,v),y=\mp@subsup{g}{2}{}(u,v), gives z=h(u,v)=f(g1(u,v),g}\mp@subsup{g}{2}{(u,v))
```


$z=f(x, y)$ depends on two variables.
Use partial derivatives.
x and y each depend on two variables. Use partial derivatives.

To compute $\frac{\partial z}{\partial v}$:

- Highlight the paths from the z at the top to the v 's at the bottom.
- Along each path, multiply the derivatives.
- Add the products over all paths.

$$
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

Example: Chain rule to convert to polar coordinates

$$
\begin{aligned}
\text { Let } z & =f(x, y)=x^{2} y \\
\text { where } x & =r \cos (\theta) \quad \text { and } \quad y=r \sin (\theta)
\end{aligned}
$$

Compute $\partial z / \partial r$ and $\partial z / \partial \theta$ using the chain rule

$$
\begin{aligned}
\frac{\partial z}{\partial r} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \\
& =2 x y(\cos \theta)+x^{2}(\sin \theta) \\
& =2(r \cos \theta)(r \sin \theta)(\cos \theta)+(r \cos \theta)^{2}(\sin \theta) \\
& =3 r^{2} \cos ^{2} \theta \sin \theta \\
\frac{\partial z}{\partial \theta} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} \\
& =2 x y(-r \sin \theta)+x^{2}(r \cos \theta) \\
& =2(r \cos \theta)(r \sin \theta)(-r \sin \theta)+(r \cos \theta)^{2}(r \cos \theta) \\
& =-2 r^{3} \cos \theta \sin ^{2} \theta+r^{3} \cos ^{3} \theta
\end{aligned}
$$

Example: Chain rule to convert to polar coordinates

$$
\text { Let } z=f(x, y)=x^{2} y
$$

where $x=r \cos (\theta)$ and $y=r \sin (\theta)$

Use substitution to confirm it

$$
\begin{aligned}
z & =x^{2} y=(r \cos \theta)^{2}(r \sin \theta)=r^{3} \cos ^{2} \theta \sin \theta \\
\frac{\partial z}{\partial r} & =3 r^{2} \cos ^{2} \theta \sin \theta \\
\frac{\partial z}{\partial \theta} & =r^{3}\left(-2 \cos \theta \sin ^{2} \theta+\cos ^{3} \theta\right)
\end{aligned}
$$

Example: Related rates using measurements

- A balloon is approximately an ellipsoid, with radii a, b, c :

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}+\frac{\left(z-z_{0}\right)^{2}}{c^{2}}=1
$$

- Radii $a(t), b(t), c(t)$ at time t vary as balloon is inflated/deflated.
- Volume $V(t)=\frac{4 \pi}{3} a(t) b(t) c(t)$.
- Instead of formulas for $a(t), b(t), c(t)$, we have experimental measurements. At time $t=2 \mathrm{sec}$:

$$
\begin{aligned}
a & =4 \mathrm{in} & \frac{d a}{d t} & =-.5 \mathrm{in} / \mathrm{sec} \\
b=c & =3 \mathrm{in} & \frac{d b}{d t}=\frac{d c}{d t} & =-.9 \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

- What is $\frac{d V}{d t}$ at $t=2$?

Example: Related rates using measurements

- Volume $V(t)=\frac{4 \pi}{3} a(t) b(t) c(t)$, and at time $t=2$:

$$
\begin{aligned}
a & =4 \mathrm{in} & \frac{d a}{d t} & =-.5 \mathrm{in} / \mathrm{sec} \\
b=c & =3 \mathrm{in} & \frac{d b}{d t}=\frac{d c}{d t} & =-.9 \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

- Without formulas for $a(t), b(t), c(t)$, we can't compute $V(t)$ as a function and differentiate it to get $V^{\prime}(t)$ as a function.
- But we can still evaluate $V(2)=\frac{4 \pi}{3}(4)(3)(3)=48 \pi$ and $V^{\prime}(2)$:

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{\partial V}{\partial a} \frac{d a}{d t}+\frac{\partial V}{\partial b} \frac{d b}{d t}+\frac{\partial V}{\partial c} \frac{d c}{d t} \\
& =\frac{4 \pi}{3}\left(b c \frac{d a}{d t}+a c \frac{d b}{d t}+a b \frac{d c}{d t}\right) \\
\text { At time } t=2: & =\frac{4 \pi}{3}((3)(3)(-.5)+(4)(3)(-.9)+(4)(3)(-.9)) \\
& =\frac{4 \pi}{3}(-26.1) \approx-109.33 \mathrm{in}^{3} / \mathrm{sec}
\end{aligned}
$$

Matrices

- A matrix is a square or rectangular table of numbers.
- An $m \times n$ matrix has m rows and n columns. This is read " m by n ".
- This matrix is 2×3 ("two by three"):

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
$$

- You may have seen matrices in High School Algebra. Matrices will be covered in detail in Linear Algebra (Math 18).

Matrix multiplication

$$
\begin{array}{cc}
A & B \\
\underbrace{\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]}_{2 \times 3} \underbrace{\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]}_{3 \times 4}=\underbrace{\left[\begin{array}{cccc}
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]}_{2 \times 4}
\end{array}
$$

- Let A be $p \times q$ and B be $q \times r$.
- The product $A B=C$ is a certain $p \times r$ matrix of dot products:

$$
\begin{aligned}
C_{i, j} & =\text { entry in } i^{\text {th }} \text { row, } j^{\text {th }} \text { column of } C \\
& =\text { dot product }\left(i^{\text {th }} \text { row of } A\right) \cdot\left(j^{\text {th }} \text { column of } B\right)
\end{aligned}
$$

- The number of columns in A must equal the number of rows in B (namely q) in order to be able to compute the dot products.

Matrix multiplication

$$
\begin{gathered}
\left.\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\begin{array}{ccc}
2 & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right] \\
C_{1,1}=1(5)+2(0)+3(-1)=5+0-3=2
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{1,2}=1(-2)+2(1)+3(6)=-2+2+18=18
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{1,3}=1(3)+2(1)+3(4)=3+2+12=17
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
\cdot & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{1,4}=1(2)+2(-1)+3(3)=2-2+9=9
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & \cdot & \cdot & \cdot
\end{array}\right]} \\
C_{2,1}=4(5)+5(0)+6(-1)=20+0-6=14
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & 33 & \cdot & \cdot
\end{array}\right]} \\
C_{2,2}=4(-2)+5(1)+6(6)=-8+5+36=33
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & 33 & 41 & \cdot
\end{array}\right]} \\
C_{2,3}=4(3)+5(1)+6(4)=12+5+24=41
\end{gathered}
$$

Matrix multiplication

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{cccc}
5 & -2 & 3 & 2 \\
0 & 1 & 1 & -1 \\
-1 & 6 & 4 & 3
\end{array}\right]=\left[\begin{array}{cccc}
2 & 18 & 17 & 9 \\
14 & 33 & 41 & 21
\end{array}\right]} \\
C_{2,4}=4(2)+5(-1)+6(3)=8-5+18=21
\end{gathered}
$$

Chain rule using matrices

Our earlier example

$$
\begin{aligned}
\text { Let } z & =f(x, y)=x^{2} y \\
\text { where } x & =r \cos (\theta) \text { and } y=r \sin (\theta)
\end{aligned}
$$

becomes

$$
\begin{aligned}
\text { Let } z & =f(x, y)=x^{2} y \\
\text { where }(x, y) & =g(r, \theta)=(r \cos (\theta), r \sin (\theta)) \\
\text { and set } h & =f \circ g
\end{aligned}
$$

$$
\begin{aligned}
h(r, \theta) & =f(g(r, \theta))=f(r \cos (\theta), r \sin (\theta)) \\
& =(r \cos (\theta))^{2}(r \sin (\theta))=r^{3} \cos ^{2}(\theta) \sin (\theta)
\end{aligned}
$$

Chain rule using matrices

$$
\begin{aligned}
\text { Let } z & =f(x, y)=x^{2} y \\
\text { where }(x, y) & =g(r, \theta)=(r \cos (\theta), r \sin (\theta))
\end{aligned}
$$

and set $h=f \circ g$

$$
h(r, \theta)=f(g(r, \theta))=\cdots=r^{3} \cos ^{2}(\theta) \sin (\theta)
$$

$$
\frac{\partial h}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} \quad \frac{\partial h}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}
$$

Chain rule using matrices

$$
\text { Let } z=f(x, y)=x^{2} y
$$

where $(x, y)=g(r, \theta)=(r \cos (\theta), r \sin (\theta))$
and set $h=f \circ g$

$$
h(r, \theta)=f(g(r, \theta))=\cdots=r^{3} \cos ^{2}(\theta) \sin (\theta)
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
\frac{\partial h}{\partial r} & \frac{\partial h}{\partial \theta}
\end{array}\right] } & =\left[\begin{array}{ll}
\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r} & \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]\left[\begin{array}{cc}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right] \\
D h(r, \theta) & =(D f \text { at }(x, y)=g(r, \theta))(D g(r, \theta))
\end{aligned}
$$

$=D$ (outside function) D (inside function)

Chain rule using matrices

$$
\text { Let } z=f(x, y)=x^{2} y
$$

where $(x, y)=g(r, \theta)=(r \cos (\theta), r \sin (\theta))$
and set $h=f \circ g$

$$
h(r, \theta)=f(g(r, \theta))=\cdots=r^{3} \cos ^{2}(\theta) \sin (\theta)
$$

$$
\begin{aligned}
{\left[\begin{array}{ll}
\frac{\partial h}{\partial r} & \frac{\partial h}{\partial \theta}
\end{array}\right] } & =\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]\left[\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 x y & x^{2}
\end{array}\right]\left[\begin{array}{cc}
\cos (\theta) & -r \sin (\theta) \\
\sin (\theta) & r \cos (\theta)
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 x y \cos (\theta)+x^{2} \sin (\theta) & -2 x y r \sin (\theta)+x^{2} r \cos (\theta)
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 r^{2} \cos ^{2}(\theta) \sin (\theta) & -2 r^{3} \cos (\theta) \sin ^{2}(\theta)+r^{3} \cos ^{3}(\theta)
\end{array}\right]
\end{aligned}
$$

Chain rule using matrices

Set $h=f \circ g$:

$$
\begin{aligned}
h: \mathbb{R}^{a} \rightarrow \mathbb{R}^{c} \quad \vec{z} & =h(\vec{x})=f(g(\vec{x})) \\
& =\left(h_{1}\left(x_{1}, \ldots, x_{a}\right), \ldots, h_{c}\left(x_{1}, \ldots, x_{a}\right)\right)
\end{aligned}
$$

The chain rule is expressed as a product of derivative matrices:

$$
\operatorname{Dh}(\vec{x})=(D f(\vec{y}) \text { at } \vec{y}=g(\vec{x}))(D g(\vec{x}))
$$

Size: $c \times a$

$$
c \times b
$$

$$
b \times a
$$

D (outside function) D (inside)

$$
\begin{aligned}
& \text { Let } g: \mathbb{R}^{a} \rightarrow \mathbb{R}^{b} \quad \vec{y}=g(\vec{x})=g\left(x_{1}, \ldots, x_{a}\right) \\
& =\left(g_{1}\left(x_{1}, \ldots, x_{a}\right), \ldots, g_{b}\left(x_{1}, \ldots, x_{a}\right)\right) \\
& f: \mathbb{R}^{b} \rightarrow \mathbb{R}^{c} \\
& \vec{z}=f(\vec{y})=f\left(y_{1}, \ldots, y_{b}\right) \\
& =\left(f_{1}\left(y_{1}, \ldots, y_{b}\right), \ldots, f_{c}\left(y_{1}, \ldots, y_{b}\right)\right)
\end{aligned}
$$

Derivatives of sums, products, and quotients

Single variable

For single variable functions $\quad f: \mathbb{R} \rightarrow \mathbb{R}, \quad g: \mathbb{R} \rightarrow \mathbb{R}$, and constant c :

$$
\begin{aligned}
\frac{d}{d x}(c f(x)) & =c \frac{d}{d x} f(x) \\
\frac{d}{d x}(f(x)+g(x)) & =\frac{d}{d x}(f(x))+\frac{d}{d x}(g(x)) \\
\frac{d}{d x}(f(x) g(x)) & =\left(\frac{d}{d x} f(x)\right) g(x)+f(x)\left(\frac{d}{d x} g(x)\right) \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right) & =\frac{g(x)\left(\frac{d}{d x} f(x)\right)-f(x)\left(\frac{d}{d x} g(x)\right)}{g(x)^{2}}
\end{aligned}
$$

Derivatives of sums, products, and quotients

Gradient

For multivariable functions $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad g: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and constant c :

$$
\begin{aligned}
\nabla(c f(\vec{x})) & =c \nabla f(\vec{x}) \\
\nabla(f(\vec{x})+g(\vec{x})) & =\nabla(f(\vec{x}))+\nabla(g(\vec{x})) \\
\nabla(f(\vec{x}) g(\vec{x})) & =(\nabla f(\vec{x})) g(\vec{x})+f(\vec{x})(\nabla g(\vec{x})) \\
\nabla\left(\frac{f(\vec{x})}{g(\vec{x})}\right) & =\frac{g(\vec{x})(\nabla f(\vec{x}))-f(\vec{x})(\nabla g(\vec{x}))}{g(\vec{x})^{2}}
\end{aligned}
$$

Derivatives of sums, products, and quotients

 Gradient examples
Example

With $\nabla f(x, y)=\left\langle f_{x}, f_{y}\right\rangle$, we apply the single variable rules for $\frac{\partial}{\partial x}$ in the $1^{\text {st }}$ component and $\frac{\partial}{\partial y}$ in the $2^{\text {nd }}$ component:

$$
\nabla\left(2 x^{2} y+3 e^{x}\right)=2 \nabla\left(x^{2} y\right)+3 \nabla\left(e^{x}\right)=\left\langle 4 x y+3 e^{x}, 2 x^{2}\right\rangle
$$

$$
\begin{aligned}
\nabla\left(e^{x y} \cos \left(x^{2}\right)\right) & =\left(\nabla\left(e^{x y}\right)\right) \cos \left(x^{2}\right)+e^{x y} \nabla\left(\cos \left(x^{2}\right)\right) \\
& =\left\langle y e^{x y}, x e^{x y}\right\rangle \cos \left(x^{2}\right)+e^{x y}\left\langle-2 x \sin \left(x^{2}\right), 0\right\rangle \\
& =\left\langle\left(y \cos \left(x^{2}\right)-2 x \sin \left(x^{2}\right)\right) e^{x y}, x \cos \left(x^{2}\right) e^{x y}\right\rangle
\end{aligned}
$$

Derivatives of sums, products, and quotients

Derivative matrix

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \quad$ and constant c

$$
\begin{aligned}
D(c f(\vec{x})) & =c D f(\vec{x}) \\
D(f(\vec{x})+g(\vec{x})) & =D f(\vec{x})+D g(\vec{x})
\end{aligned}
$$

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \quad g: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- For multiplying or dividing scalar-valued functions of vectors:

$$
\begin{aligned}
D(f(\vec{x}) g(\vec{x})) & =(D f(\vec{x})) g(\vec{x})+f(\vec{x})(D g(\vec{x})) \\
D\left(\frac{f(\vec{x})}{g(\vec{x})}\right) & =\frac{g(\vec{x})(D f(\vec{x}))-f(\vec{x})(D g(\vec{x}))}{g(\vec{x})^{2}}
\end{aligned}
$$

- This case is identical to the gradient on the previous slides: Since f, g are scalar-valued, $D f=\nabla f$ and $D g=\nabla g$ are just different notations for the same thing.

Derivatives of sums, products, and quotients

 Derivative matrix: example$$
\begin{aligned}
D\left\langle x^{2} y+3 e^{x}, x y^{3}+3 e^{y}\right\rangle & =D\left\langle x^{2} y, x y^{3}\right\rangle+3 D\left\langle e^{x}, e^{y}\right\rangle \\
& =\left[\begin{array}{cc}
2 x y & x^{2} \\
y^{3} & 3 x y^{2}
\end{array}\right]+3\left[\begin{array}{cc}
e^{x} & 0 \\
0 & e^{y}
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 x y+3 e^{x} & x^{2} \\
y^{3} & 3 x y^{2}+3 e^{y}
\end{array}\right]
\end{aligned}
$$

