Math 20C – Swanson – Fall 2020 Homework 5 Due Friday, 11/13/20 at 11:59pm

- The graded part of the homework is on WebAssign.
- The problems below are also assigned and you are responsible for doing them, but they will not be collected or graded.

- 1. Sketch these parametric curves by hand, using methods discussed in class for Chapter 2.4:
 - (a) $\vec{c}(t) = (t\cos(t), t\sin(t))$, where $0 \le t \le 4\pi$.
 - (b) $x = -3t\sin(t), y = 4t\cos(t), \text{ where } 0 \le t \le 4\pi.$
 - (c) $\vec{c}(t) = -\sin^2(t)\hat{i} + \cos^2(t)\hat{j}$.
 - (d) $\vec{c}(t) = 2t\hat{i} + 3\cos(t)\hat{j} + 4\sin(t)\hat{k}$.
 - (e) $x = \cos(t), y = \sin(t), z = \sin(3t)$.
 - (f) $x = 5e^{-t}, y = e^t$, where $0 \le t \le \ln(10)$.

After sketching them by hand, check them with a computer.

- 2. Recall the first part of the Fundamental Theorem of Calculus: if $F(x) = \int_a^x f(t) dt$, then F'(x) = f(x). For example, if $F(x) = \int_a^x \sin(\sqrt{t+8}) dt$, then $F'(x) = \sin(\sqrt{x+8})$. The integral $\int_0^x e^{-t^2} dt$ arises in probability and statistics. It can't be evaluated in terms of ordinary functions. Nonetheless, we may compute:
 - (a) $\frac{d}{dx} \int_0^x e^{-t^2} dt$.
 - (b) $\frac{d}{dx} \int_0^{x^3} e^{-t^2} dt$ by completing the following outline. Let $G(u) = \int_0^u e^{-t^2} dt$. Note that $\int_0^{x^3} e^{-t^2} dt = G(x^3)$. Use the chain rule to compute $\frac{d}{dx} G(x^3)$.
 - (c) Compute $\frac{\partial}{\partial x} \int_{10y}^{x^3} e^{-t^2} dt$ and $\frac{\partial}{\partial y} \int_{10y}^{x^3} e^{-t^2} dt$. Note that $\int_{10y}^{x^3} e^{-t^2} dt = G(x^3) G(10y)$, using the same G(u) defined in the previous part.