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Optimizing y = f(x)

@ In Math 20A, we found the minimum and maximum of y = f(x) by
using derivatives.

@ First derivative:
Solve for points where f/(x) = 0.
Each such point is called a critical point.

@ Second derivative:
For each critical point x = a, check the sign of " (a):

@ f"(a) > 0: The value y = f(a) is a local minimum.
@ f"(a) < 0: The value y = f(a) is a local maximum.
@ f"(a) = 0: The test is inconclusive.

@ Also may need to check points where f(x) is defined but the
derivatives aren’t, as well as boundary points.

@ We will generalize this to functions z = f(x, y).
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Local extrema (= maxima or minima)

Consider a function z = f(x, y).
The point (x,y) = (a,b) Is a

@ /ocal maximum when f(x,y) < f(a, b) for all (x,y)
in a small disk (filled-in circle) around (a, b);

@ global maximum (a.k.a. absolute maximum)
when f(x, y) < f(a, b) for all (x, y);

@ /ocal minimum and global minimum are similar
with f(x,y) = f(a, ).

@ A, C,E are local maxima (plural of maximum)
E is the global maximum
D, G are local minima
G is the global minimum

@ B is maximum in the red cross-section but
minimum in the purple cross-section!
It's called a saddle point.
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Critical points on a contour map

Classify each point P, Q, R, S as local maximum or minimum, saddle
point, or none.

@ |solated max/min usually have small closed curves around them.
Values decrease towards P, so P is a local minimum.
Values increase towards Q, so Q is a local maximum.
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Critical points on a contour map

@ The crossing contours have the same value, 1. (If they have
different values, the function is undefined at that point.)

@ Here, the crossing contours give four regions around R.

@ The function has
@ alocal min. at R on lines with positive slope (goes from >110 1 to >1)
e alocal max. at R on lines with neg. slope (goes from <1 to 1 to <1).

@ Thus, R Is a saddle point.
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Critical points on a contour map

@ S is a regular point.
lts level curve = 8 is implied but not shown.
The values are bigger on one side and smaller on the other.

P: local min Q: local max R: saddle point S: none
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Contour map of z = y/x: crossing lines
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@ Contours of z = y/x are diagonal lines: z = c along y = cx.
@ Contours cross at (0,0) and have different values there.
@ Function z = y/x is undefined at (0, 0).
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Contour map of z = sin(y)

Minimum and maximum form curves, not just isolated points
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@ Contours of z = f(x,y) = sin(y) are horizontal lines y = arcsin(z)

@ Maximum aty = (2k + ) for all integers k
Minimum aty = (2k — 3)7

@ These are curves, not isolated points enclosed in contours.
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Finding the minimum/maximum values of z = f(x, y)

4§

@ The tangent plane is horizontal at a local minimum or maximum:
fla,b) + fila,b)(x —a) + fy(a,b)(y —b) —z = 0.
The normal vector { fi(a,b),f;(a,b), —1) || z-axis
when fi(a, b) = fy(a,b) =0, or Vf(a b) = 0.

@ At points where Vf # 0, we can make f(x, )
e larger by moving in the direction of Vf;
e smaller by moving in the direction of —V¥.

@ (a,b) is a critical point if Vf(a,b) is 0 or is undefined.
These are candidates for being maximums or minimums.

@ Critical points found in the same way for f(x, y,z,...).
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Completing the squares review

@ (x+m)? =x*+2mx+m?

@ For a quadratic x> + bx + ¢, take half the coefficient of x:
b2

@ Form the square:
(x +b/2)?> = x>+ bx+ (b/2)?
@ Adjust the constant term:
X +bx+c=(x+b/2*+d whered=c— (b/2)*

Example: x* + 10x + 13

@ Take half the coefficient of x: 10/2 =5
@ Expand (x +5)?> = x> + 10x + 25

@ Add/subtract the necessary constant to make up the difference:
X+ 10x+13=(x+5)>—12
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Completing the squares review

For ax® + bx + ¢, complete the square for a(x* + (b/a)x) and then adjust
the constant.

Example: 10y — 60y + 8

@ 10y> — 60y + 8 = 10(y* — 6y) + 8

@y —6y=(y—3)"—9

@ 10y> —60y+8 =10(y —3)>+ 7

@ 10(y —3)? = 10(y* — 6y +9) = 10y* — 60y + 90
@ 10y> — 60y +8 =10(y —3)> — 82
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Critical points

@ Let f(x,y)=x>—2x+y>—4y+15
Vi={2x—2,2y —4)

@ Vf=0atx=1,y=2,s0 (1,2) is a critical point.

@ Use (x—1)=x>*—2x+1
(y—2)2=y>—4y+4
fle,y)=(x—1)2+(y—2)*+10

We “completed the squares”™: x* —ax = (x — %)2 — (%)2

@ f(x,y) > 10 everywhere, with global minimum 10 at (x,y) = (1, 2).
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Second derivative test for functions of two variables

How to classify critical points V£ (a, b) = 0 as local minima/maxima or saddle points

Compute all points where Vf(a, b) = 0, and classify each as follows:

@ Compute the discriminant at point (a, b):

of 9

0x?2 Oy 0x )
D — 62f 6_2f :fxac(asb)fyy(a:b) o (fxy(a:b))

0x Oy 0y?

A\ . 7
~\

Determinant of “Hessian matrix” at (x, y)=(a, b)

@ If D> 0andf, > 0then z=f(a,b) is a local minimum;
If D > 0and f,, < 0thenz=f(a,b) is a local maximum;
If D < 0then f has a saddle point at (a, b);

If D = 0 then it's inconclusive;
min, max, saddle, or none of these, are all possible.
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Find the critical points of f(x,y) = x> — y* and classify them using the
second derivatives test.

@ Vf = (2x,—2y) =0at (x,y) = (0,0).

@ The x = 0 cross-section is £(0,y) = —y* < 0.
The y = 0 cross-section is f(x,0) = x> > 0.
It is neither a minimum nor a maximum.

@ fulx,y)=2 and f£.(0,0) =2
fy(x,y) =—2 and £,(0,0) =2
folx,y)=0 and f,(0,0)=0

D :fXX(Os O)ﬁy(O! O) o (]ny(O! 0))2
= (2)(—2)—0*=—-4<0
so (0,0) is a saddle point

Prof. Tesler 3.3-3.4 Optimization Math 20C / Fall 2018



@ Vf = (2x, —2y) points in the direction of greatest increase of f(x, y).

@ The function increases as we move towards the x-axis and away
from the y-axis. At the origin, it increases or decreases depending
on the direction of approach.

Contour plot
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Example: flx,y) =8y 4+ 12x*> — 24xy

Find the critical points of f(x, y) and classify them using the second
derivatives test.

@ Solve for first derivatives equal to O:
c=24x—24y=0 qQives x=y
fy =24y —24x =0 gives 24y —24y =24y(y—1)=0
SO y=0o0r y=1

xX=y SO (x,y) = (0,0) or (1,1)
@ Critical points: (0,0) and (1, 1)
@ Second derivative test: (D = fucfyy — (fiy)?)
Critpt f fu.=24 f,=48y f,=-24 D
(0,0) 0 24 0 24  —576 D<0
saddle
(1,1) —4 24 48 —24 576 D >0 and f, >0

local minimum

@ No absolute min or max: £(0,y) = 8y® ranges over (—oo, 00)
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Example: flx,y) =2+ —3x—3y* + 1

Find the critical points of f(x, y) and classify them using the second
derivatives test.

@ Solve for first derivatives equal to 0:

fx:3X2—3=0 gives x = =1
fy=3y*"—6y=3y(y—2)=0 gives y=0 or y=2

@ Critical points: (—1,0), (1,0), (—1,2), (1,2)

@ Second derivative test: (D = fucfyy — (fiy)?)
D Type
(—1,0) 3 —6 —6 0 36 D>0and f,<0:
local max
(1,0) —1 6 —6 0 —36 D<0: saddle
(—1,2) —1 —6 6 0 —36 D<0: saddle
(1,2) =5 6 6 0 36 D>0and f,>0:
local min
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fx,y) =xy(1 —x—y)

Find the critical points of f(x, y) and classify them.

@ Solve for first derivatives equal to 0:

f=xy—xy—xy

fi=y—2xy—y*=y(1—2x—y) gives y=0o0r 1 —2x—y=0
fr=x—x2—2xy=x(1—x—2y) gives x=0or 1 —x—2y=0

@ Two solutions of f, =0 and two of f, =0 gives 2-2=4 combinations:

) y=0 and x=0 gives (x,y) = (0,0).
o y=0 and 1—x—2y=0 gives (x,y) = (1,0).
@ 1—2x—y=0 and x=0 gives (x,y) = (0,1).

@ 1—2x—y=0 and 1—x—2y=0:
The 18t equation gives y = 1 — 2x. Plug that into the 2"? equation:

O0=1—x—2y=1—x—2(1—-2x)=1—x—2+4x=3x—1

).

SOx:%andy:1—2x:1—2(%):% gives (x,y):(%,

Q| =
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Example: flx,y) =xy(1 —x—y)

Classify the critical points using the second derivatives test.

@ Derivatives:

f=xy—xy—xy fi=y—2xy—y" fy=x—x"—2xy
foe = —2y yy = —2X
o =fx=1—2x—2y
@ Second derivative test: (D = fucfyy — (fiy)?)
(0,0) 0 0 0 1 —1 D < 0: saddle
(1,0) 0 0 —2 —1 —1 D < 0:saddle
(0,1) 0 —2 0 —1 —1 D < 0: saddle

(1/3,1/3) 1/27 —-2/3 —-2/3 —1/3 1/3 D >0 and f, <0:
local maximum
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Boundary of a region

_____

A { B ) Boundary

______

@ Consider aregion A C R”.

@ A pointis a boundary point of A if every disk (blue) around that
point contains some points in A and some points not in A.

@ A point is an interior point of A if there is a small enough disk
around it fully contained in A.

@ In both A and B, the boundary points are the same: the perimeter
of the hexagon.

@ 0A denotes the set of boundary points of A.
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Extreme Value Theorem

Closed Open Neither

______

______

@ A region is bounded if it fits in a disk of finite radius.

@ A regionis closed if it contains all its boundary points and open if
every point in it is an interior point.

@ Open and closed are not opposites: e.g., R? is open and closed!
The third example above is neither open nor closed.

Extreme Value Theorem
If f(x,y) Is continuous on a closed and bounded region, then it has a
global maximum and a global minimum within that region.

To find these, consider the local minima/maxima of f(x, y) that are
within the region, and also analyze the boundary of the region.
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Example: f(x,y) =x*+y® —3x —3y> 4 1 in a triangle

Find the global minimum and maximum of f(x,y) = x> +y> —3x—3y*+ 1

in the triangle with vertices (0, 0), (0, 3), (3, 3).

Critical points inside the region

@ First find and classity the critical ]
points of f. (We already did.)

@ f(1,2) = —51is alocal minimum
and is inside the triangle.

@ Ignore the other critical points

since they're outside the triangle. o+ @

o
(_1 12)
saddle

f(-1,0)=3
loc max

f(1,2)=-5
loc min

(1,0)
‘saddle

@ Ignore the saddle points.
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Example: f(x,y) =x*+y® —3x —3y> 4 1 in a triangle

Find the global minimum and maximum of f(x,y) = x> +y> —3x—3y*+1

in the triangle with vertices (0, 0), (0, 3), (3, 3).

R Y Extremaonleftedge: x=0and 0 <y <3
@ Set

f(1,2)=—5
loc min

Diagonal

b xed g'(y)=3y* — 6y =3y(y — 2)
¢g'(y)=0 aty=0or2.

@ We consider y = 0 and 2 by that test.

D
=

(0.0 We also consider boundaries y = 0 and 3
@ Candidates: f(0,0)=1
f(0,3)=1

g)=£(0,y) =y> =3y +1 for 0 <y<

3

@ We could use the second derivatives test for

one variable, but we’'ll do it another way.

23 /56
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Example: f(x,y) =x*+y® —3x —3y> 4 1 in a triangle

Find the global minimum and maximum of f(x,y) = x> 4+y> —3x—3y*+ 1
In the triangle with vertices (0, 0), (0, 3), (3, 3).

Top

y=3
(0,3) O0=<x<3 (3,3)
®
f(1,2)=-5
loc min

Left ® Diagonal
x=0 y=X
O<y=<3 O=<x=<3

(0,0)

Extremaontopedge: y=3and 0 < x <3

@ Set
h(x)=f(x,3) =x>4+27 —3x—27+1
— x> —3x+1 for 0<x<3
h'(x) = 3x> —3
h'(x)=0 atx==1 (but —1 is out of range)
@ Also consider the boundaries x = 0 and 3.

@ Candidates: f(0,3)=1

£(3,3)= 19
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Example: f(x,y) =x° +y°

Find the global minimum and maximum of f(x,y) = x>+
in the triangle with vertices (0, 0), (0, 3), (3, 3).

09 omn=3 Diagonal edge' y=xfor0 < x<3
f(1,2)=-5 @ For 0 < x <3, set
loc min L . 2
Left Diagonal p(X) _f( s ) - 2.X - 3)(,' B 3)6 _I_ 1
x=0 =X = 2x° — 3x* —3x + 1
<y=<3 O<x=<3
p'(x) = 6x> —6x —3
p'(x)=0 atx=1E¥3 ~_0.366,1.366

(but =3 is out of range)

—3x —3y* + 1 in a triangle

3 —3x—3y*+1

@ Also conS|der the boundaries x = 0 and 3.

@ Candidates: f(0,0)=1
f(3,3)=19
f (1+2\/§, 1+2\/§) — 1

_3V3
2 'Y

3.598
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Example: f(x,y) =x*+y® —3x —3y> 4 1 in a triangle

Find the global minimum and maximum of f(x,y) = x> +y> —3x—3y*+1
In the triangle with vertices (0, 0), (0, 3), (3, 3).

Compare all candiate points .

f(l,Z) = —3:
The global minimum is —5.
It occurs at (x,y) = (1,2).

f(3,3) =19:
The global maximum is 19.
It occurs at (x,y) = (3,3).

Prof. Tesler

£(0,3)=1
®

f(1,3)=—1 f(3,3)=19
@

f(1,2)=-5
f(0,2)=F3 loc min
N — ® o
(_1!2)
ddl
saddle i(1.366,1.366)
S =-3.598
f(-1,0)=3
) Ioc‘ max ‘(1 ,0)
o —
(0,0)=1 saddle
| | | | |
-1 0 1 2 3
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Extrema of f(x,y) = |xy|: Vf isn't defined everywhere

Extrema of f(x,y) = |xy| on rectangle
—1<x<1,-2<y<?2

1202 |10 1122 @ 1st & 3rd quadrants: f(x,y) = xy and Vf = (y,x).

@ 2nd & 4th quadrants: f(x,y) = —xy and Vf = —(y, x).

@ Away from the axes, Vf # 0.
y 1 @ On the axes, Vf is undefined.

=0 o 7(x,0) =£(0,y) =0 on the axes.
All points on the axes are tied for global minimum.
@ On the perimeter, f(x1,y) = |y| and f(x, £2) = 2|x|:
(22 | 1122 @ Minimum f =0 at (£1,0) and (0, +2).
e Maximumf =2at(1,2),(1,—2),(—1,2),(—1,—2).
@ The global maximum is f = 2 at
(1,2),(1,-2),(—1,2),(—1,—2).
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Extrema of f(x,y) = |xy|: Vf isn't defined everywhere

Extrema of f(x,y) = |xy| on open rectangle
—l<x<l,2<y<?2

. @ Global minimum is still f = 0 on axes.
@ No global maximum. While f(x, y) gets arbitrarily
| , close to 2, it never reaches 2 since those corners
o 2| " are not in the open rectangle. )
f(-1,-2)=2 f(1,-2)=2
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Optional: Second derivative test for f(x, y,z, ...

Full coverage requires Linear Algebra (Math 18)

@ The Hessian matrix of f(x,y,z) is

_ a_zf azf azf -
0x? dyox  0zO0x

o°f o°f o°f
0x Oy 0y? 0z Oy

02f 02%f 9%f
L0x0z 0yo0z 072 -

@ Forf:R" — R, it's an n x n matrix of 2" partial derivatives.

@ For each point with Vf = 0, compute the determinants of the
upperleft1 x 1,2 x 2,3 x 3, ..., n x nsubmatrices.
e If the n x n determinant is zero, the test is inconclusive.
e If the determinants are all positive, it's a local minimum.
e If signs of determinants alternate —, +, —, ..., it’s a local maximum.
@ Otherwise, it's a saddle point.

@ Wedid 2 x 2 and 3 x 3 determinants. For 1 x 1, det|x] = x.
n x n determinants are covered in Linear Algebra (Math 18).
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Optional example: f(x,y,z) = x* +y*> + 2> + 2xyz + 10

@ Solve Vf = 0; Vf = (2x + 2yz, 2y + 2xz, 2z + 2xy) =0
X=—yZ, Yy=—XZ = —X).
@ There are five solutions (x, y, z) of Vf = 0 (work not shown):
(0,0,0), (1,1,—1), (—=1,1,1), (1,—1,1), (—1,—1,—1).

(2 27 2y 2 00
@ Hessian= |2z 2 2x At (0,0,0): |0 2 O
2y 2x 2 0O 0 2

2 0

det [2] =2 det [o X

2 0
]:4 det |0 2
0O 0

@ All positive, so f(0,0,0) = 10 is a local minimum.
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Optional example: f(x,y,z) = x* +y*> + 2> + 2xyz + 10

(2 2z 2y 2 -2 2
@ Hessian= |2z 2 2x At (1,1,—-1): |—2 2 2
2y 2x 2| 2 2 2
s 2 2 2
det[2| =2 det [_2 2] =0 det|-2 2 2|=-32
2 2 2

@ Signs +, 0, —, so saddle point.

@ Critical points (—1,1,1), (1,—1,1), (—1,—1,—1) give the same
determinants 2,0, —32 as this case, so they're also saddle points.
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Optimization with a constraint

-1.0 -05 00 05 1.0

-10 -05 00 05 1.0

@ A hiker hikes on a mountain z = \/1 —x2 —y2.

@ Plot their trail on a topographic map x*> 4+ 4y* =1 (red ellipse).

@ What is the minimum and maximum height reached, and where?
@ Ontheellipse, y* = (1 —x?)/4and —1 < x < 1, SO

e=\/l—a— (12 )/4_ V31— )
Minimum atx=+1_ [Maximumatx=0 |

@ y»=(1—(£1)*)/4=0s0y=0 @ y¥=(1-0")/4=1/4s0y=+!

@ z=/(3/4)(1—(£1?)=0 o 1 ST Gl [
@ Min: z=0at (x,y) = (£1,0) \/4 \/: 2

@ Max: z = 2 at (x,y) = (0, +1)
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3.4. Lagrange Multipliers

General problem
Find the minimum and maximum of f(x,y,z,...)

subject to the constraint g(x,y,z,...) = c (constant)
This problem

Find the minimum and maximum of  f(x \/1 —x2 —y?2

subject to the constraint g(x,y) = x>+ 4y’ =1

Approaches

@ Use the constraint g to solve for one variable in terms of the
other(s), then plug into f and find its extrema.

@ New method: Lagrange Multipliers

| \
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Lagrange Multipliers

1.0

0.5
I

-1.0 -0.5 0.0

-10 -05 00 05 1.0
@ On the contour map, when the trail (g(x,y) = ¢, in red) crosses a
contour of f(x,y), f is lower on one side and higher on the other.

@ The min/max of f(x,y) on the trail occurs when the trail is tangent
to a contour of f(x, y)! The trail goes up to a max and then back
down, staying on the same side of the contour of f.

@ Recall Vf L contours of f Vg L contours of g
So contours of f and g are tangent when Vf||Vg, or Vf = A Vg for

some scalar A (called a Lagrange Multiplier).
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Lagrange Multipliers for the ellipse path

@ Find the minimum and maximum of z= /1 —x2 —y?
subject to the constraint X2+ 4y = 1.

@ This is equivalent to finding the extrema of z2 = 1 — x> — y°.
@ Set f(x,y)=1—x>—y> and g(x,y)=x>+4y*> (constraint: = 1).

@ Solve Vf =AVgand g(x,y) = c for x, y, A:
—2x = 2Ax —2y = 8\y x> 4 4y? =1
2x(14+A) =0 y(2+8A) =0
x=00rA=-—1 y=00rA=—-1/4
@ Solutions:
e x=0  gives y—i\/1—02/2—i1 A=—2/8=—1/4,

z=/1-02—(1/2)2 = V/3)2.
o A=—1 gives y=0, x:i\/1—40)2:i1,
z=+/1—(£1)2-02=0.

Prof. Tesler
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Lagrange Multipliers for the ellipse path

@ /1 —x2 —y2is continuous along the closed path x*> +4y?> =1, so
@ 7= % at (x,y) = (0, i%) are absolute maxima

@ z=0at (x,y) = (£1,0) are absolute minima

@ A is atool to solve for the extremal points; its value isn’t important.
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Lagrange Multipliers on Closed Region with Boundary

Find the extrema of  z= /1 —x2 —)?
subject to the constraint x> + 4y* < 1.

-05 00 05 1.0

-1.0

-10 -05 00 05 1.0

@ Analyze interior points and boundary points separately.
Then select the minimum and maximum out of all candidates.

@ In x?> 4+ 4y? < 1 (yellow interior), use critical points to show the
maximum is f(0,0) = 1.

@ On boundary x* 4 4y*> = 1 (red ellipse), use Lagrange Multipliers.
minimum f(£1,0) = 0, maximum f(O0, i%) — % ~ (0.860.

@ Comparing candidates (red spots) gives
absolute minimum f(41,0) = 0, absolute maximum f(0,0) = 1.
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Example: Rectangular box

Method 1: Critical points

An open rectangular box (5 sides but no top) has volume 500 cm?.
What dimensions give the minimum surface area, and what is that area?

Volume V = xyz =500

Area bottom + left & right
+ front & back
y A =xy+ 2xz+ 2yz

@ Physical intuition says there is some minimum amount of material
needed in order to hold a given volume. We will solve for this.

@ There’s no maximum, though:

e.qg., Ietx—y,z—soo—sfo and let x — oo. Then A — oo.

Xy
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Example: Rectangular box

Method 1: Critical points

An open rectangular box (5 sides but no top) has volume 500 cm?.
What dimensions give the minimum surface area, and what is that area?

> Dimensions x,y,z > 0
_____________________ Volume V = xyz = 500
X Area A =xy+2xz+2yz

@ The volume equation gives z = 23

@ Plug that into the area equation:

500 500 1000 1000
A=xy+2x - — +2y - — =xy+ +
Xy Xy Yy X
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Example: Rectangular box

Method 1: Critical points

1000 1000
A=xy+ —+
y X
@ Find first derivatives:
1000 1000
Ay =y — 2 Ay =x— "

@ Solve A, = A, = 0: Plug y = 1000/x? into x = 1000/y* to get

1000 X!
1000/ = 1000 x*—1000x =0  x(x> —1000) =0

so x = 0 or x = 10 (and two complex solutions)

X =

@ x = 0 violates V = xyz = 500.
Also, we need x > 0 for a real box.

@ x=10 gives y=1%0 =100 =10 and z=2 = %5 =5
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Example: Rectangular box

Method 1: Critical points

1000 1000

A=xy+ ——+

y X
@ Check if x =y =10 is a critical point:

1000 1000

Ay =y— =10 — =10—10 =
Y- 0 2 0—10=0
1000 1000

@ Yes, it's a critical point.
@ Solution of original problem:

Dimensions x=y=10cm, z=5cm
Volume V = xyz = (10)(10)(5) = 500 cm?

Area A =xy+2xz+2yz
= (10)(10) + 2(10)(5) +2(10)(5) = 300 cm?
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Example: Rectangular box

Method 1: Critical points

1000 1000
A=xy+—+
y X

Second derivatives test at (x,y) = (10,10):

2000 2000
o = = — = 2
x3 103
2000 2000
Ayy = BT 2
Agy = 1
D=(2)2)—1*=3>0 and A, >0 so local minimum
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Example: Rectangular box

Method 1: Critical points Using gradients instead of 2" derivatives test
1000 1000 1000 1000
A=xy+—+ A A ——
Y Y

@ The signs of A,, A, split the first quadrant into four regions.
@ VA(x,y) points away from (10, 10) in each region.
@ A(x,y) increases as we move away from (10, 10) in each region.

@ So (10, 10) is the location of the global minimum.
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Example: Rectangular box

Method 2: Lagrange Multipliers

An open rectangular box (5 sides but no top) has volume 500 cm?.
What dimensions give the minimum surface area, and what is that area?

> Dimensions x,y,z > 0
_____________________ Volume V = xyz = 500
X Area A =xy+2xz+2yz

@ Solve VA =AVV and V = xyz = 500 for x, y, z, A.
@ Solve (y + 2z,x + 2z,2x + 2y) = A {yz, xz,xy) and V = xyz = 500

@ Solve for A:

y+2z x+2z 2x+12

A =
VZ XZ Xy
1 2 1 2 2 2
A=—-—F+-—=—-+—-=—+ -
z 0y Z X Yy X

There is no division by 0 since xyz = 500 implies x,y, z # 0.
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Example: Rectangular box

Method 2: Lagrange Multipliers

1 2 1 2 2 2
}\:——|——:——|——:——|——
< y < X y X

@ Taking any two of those at a time gives

1 2 2

Z 0y X

( 272)(22)(z) = 472> = 500

22 =500/4=125 and z=>5
=y=2z=10

(x,y,z) — (10, 10,5) cm

@ Area: (10)(10) +2(10)(5) +2(10)(5) = 300 cm?.

@ This method doesn't tell you if it's a minimum or a maximum!

Use your intuition (in this case, there is a minimum area that can
encompass the volume, but not a maximum) or test nearby values.

@ Combine with xyz = 500:
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Example: Rectangular box

Method 2: Lagrange Multipliers

This method doesn’t tell you if it's a minimum or a maximum!

@ Use your intuition (in this case, there is a minimum area that can
encompass the volume, but not a maximum) or test nearby values.

@ Surface xyz = 500 (with x, y, z > 0) is not bounded, so Extreme
Value Theorem doesn’t apply. No guarantee there’s a global
min/max in the region.

@ Only one candidate point, so we can’t compare candidates.

@ Pages 197-201 extend the 2"¥ derivatives test to constraint
equations, but it uses Linear Algebra (Math 18).
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Example: Function of 10 variables

Find 10 positive #'s whose sum is 1000 and whose product is maximized:

Maximize f(xl, - ,xlo) = X1X2 ... X10 Vf: <){—1, e
Subjectto g(xl,...,xlo):x1+---+x10:1000 ng(l,...,l}

® Solve Vf =AVg: £ =...=L =1
X| ==X

@ Combine with constraint g = x; + - - - + x;0 = 1000:
10x; =1000 sO x;=---=x30 =100

@ The product is 100! = 10?". This turns out to be the maximum.

@ Minimum: as any of the variables approach 0, the product
approaches 0, without reaching it. So, in the domain
Xt,...,x10 > 0, the minimum does not exist.

f
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Closest point on a plane to the origin

-

X

What point on the plane x + 2y + z = 4 is closest to the origin?

@ Physical intuition tells us there is a minimum but not a maximum.
@ No max: plane has infinite extent, with points arbitrarily far away.

@ Approaches: vector projections (Chapter 1.2), critical points (3.3),
and Lagrange Multipliers (3.4).

@ Generalization: Given a point A, find the closest point to A on
surface z = f(x,y).

y
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Closest point on a plane to the origin

Method 1: Projection

-

X

What point on the plane x + 2y + z = 4 is closest to the origin?

y

@ Pick any point Q on the plane; let's use QO = (1,1, 1).

@ Form the projectiorg)f a= @ = (1, 1, 1) along the normal vector
n=(1,2,1) to get OP, where P is the closest point:

@ mi (1-1+1-2+1-1)ii  4i

55 _ /242
7 12 +22 412 6 \3'3’3

e —
@ Closest pointis P=0+ 0P = (3,%,2).

Prof. Tesler 3.3-3.4 Optimization Math 20C / Fall 2018 49/ 56



Closest point on a plane to the origin

Method 2: Critical points

What point on the plane x 4 2y + z = 4 is closest to the origin?

@ For (x,y,z) on the plane, the distance to the origin is

fl6y.2) = /(=02 4+ (y =012 + (2 —0)2 = /a2 )2 + 22
@ This is minimized at the same place as its square:
g(x,y,z2) =x*+y*+7°
@ On the plane, z =4 — x — 2y. So find (x, y) that minimize
hix,y) =x*+y* 4+ (4 —x—2y)°

Then plug the solution(s) of (x,y) into z =4 — x — 2y.
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Closest point on a plane to the origin

Method 2: Critical points

What point on the plane x + 2y + z = 4 is closest to the origin?
@ Minimize h(x,y) = x* +y* + (4 —x — 2y)>.
@ First derivatives:
hy =2x—24—x—2y) =4x+4y—8
hy =2y +2(—2)(4 —x—2y) =4x+ 10y — 16
@ Critical points: solve h, = h, = 0:
h, =0 qives y=2—x
hy =0 becomes 4x+ 10(2—x)—16

—4x+20—10x—16=—-6x+4=0
SO x=2/3 and y=2—-2/3=4/3

@ Thisgivesz =4 —x—2y = 4 — (2/3) — 2(4/3) = 2/3.

(3:3:3) |-

@ The pointis

lts distance to the origin is \/(%)2 + (324 ()2 = 2 =26
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Closest point on a plane to the origin

Method 2: Critical points

2nd derivative test Gradient diagram

The plane is split into four regions,
h(x,y) = x* + y* + (4—x—2y)?* | according to the signs of 4, and &,

h increases as we move away from (3,3),

hy = 4x + 4y — 8 so it’'s an absolute minimum.

hy = 4x 4+ 10y — 16

he=4 hy=10 hy =4 i

(2/3,4/3)

D = (4)(10) — 4% =24

Since D > 0 and A, > 0, .|/
it’'s a local minimum.
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Closest point on a plane to the origin

Method 3: Lagrange Multipliers
What point on the plane z =4 — x — 2y is closest to the origin?

@ Rewrite this as a constraint function = constant: x +2y+z=4
@ Minimize f(x,v,2) =x*+y>+72° (square of distance to origin)
Subjectto g(x,y,z) =x+2y+z=4 (constraint: on plane)

@ Solve Vf =AVgand x + 2y + z = 4:

(2x,2y,2z) = A (1,2,1) xX+2y+z=4
dx=A-1 2y=A-2 27=A-1

x=1% y=A z=%2 2420+ 5 =3A=4soA=1%
x=% y=73% z=%
@ The closest pointis (3, 5, ).

L[
—
[\
_|_
—
W
—
[\
_|_
—
NI\
—
)
|
N\
~
‘l\)
S

Its distance to the origin is \/(
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Closest point on a surface to a given point

What point Q on the paraboloid z = x*> + y* is closest to P = (1,2,0)?
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Closest point on a surface to a given point

What point Q on the paraboloid z = x*> + y* is closest to P = (1,2,0)?
@ Minimize the square of the distance of P to O = (x, y, z)
fy,2)=x—17+(y—2)"+ (z—0)
subject to the constraint
g(x,y,2) =x*+y"—72=0

Vf=Q2x—1),2(y —2),2z) Vg = (2x,2y,—1)
@ Solve Vf =AVgand g(x,y,z) =0 for x,y, z, A:

2(x — 1) = A(2x) 2(y —2) = A(2y) 2z =—A
x° —|—y2 —2z=0

@ Note x # 0 since the 15t equation would be —2 = 0. Similarly, y # 0.
So we may divide by x and y.

® Thefirstthreegive A=1—-{=1—-7=-2z s0y=2x

@ Constraint gives z=x>+y> = x>+ (2x)? = 547
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Closest point on a surface to a given point

What point Q on the paraboloid z = x*> + y* is closest to P = (1,2,0)?

_ ) _ 1 _ 2 _
@ Sofar, y=2x, z=>5x, and ?\—1—;—1—5——21

@ Then1—1=—-27=-2(5x?) gives 1 — 1 = —10x?, SO
10X +x—1=0

@ Solve exactly with the cubic equation or approximately with a
numerical root finder.
https://en.wikipedia.org/wiki/Cubic_function#Roots _of a_cubic_function
It has one real root (and two complex roots, which we discard):

1
x = % — —~03930027  where a = i/ 1350 + 30 V2055

y =2x &~ 0.7860055 7z =5x" ~ 0.7722557
0 = (x,2x, 5x*) ~ (0.3930027,0.7860055, 0.7722557)
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