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Hiking trail and chain rule
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A mountain has altitude z = f (x, y) above point (x, y).
Plot a hiking trail (x(t), y(t)) on the contour map.
This gives altitude z(t) = f (x(t), y(t)), and 3D trail (x(t), y(t), z(t)).
We studied using the chain rule to compute the hiker’s vertical
speed, dz/dt.
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How steep are different cross-sections of a mountain?
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Partial derivatives
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Slope at point P = (x, y) = (a, b) when traveling east→
Hold y constant (y = b) and vary x, giving z = f (x, b).
Get a 2D curve in the vertical plane y = b.
Slope at P is ∂z

∂x = fx(a, b).
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Partial derivatives
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Slope at point P = (x, y) = (a, b) when traveling north ↑
Hold x constant (x = a) and vary y, giving z = f (a, y).
Get a 2D curve in the vertical plane x = a.
Slope at P is ∂z

∂y = fy(a, b).
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Directional derivatives
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Slope at P = (x, y) = (a, b) when traveling on diagonal line↗
On the 2D contour map, draw a diagonal line through P.
On the 3D plot, this is a 2D curve on a vertical cross-section.
What’s the slope when traveling through P along this curve?
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Directional derivatives
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Let ~u = 〈u1, u2〉 be a unit vector in the xy plane.
On the map, travel on the line through (a, b) with direction ~u:

~r(t) = 〈x(t), y(t)〉 = 〈a, b〉+ t~u .

Each (x, y) point gives a z coordinate via z = f (x, y).
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Directional derivatives

Traveling on line ~r(t) = 〈x(t), y(t)〉 = 〈a, b〉+ t~u:
Time (x, y) z
t = 0 (a, b) f (a, b)

t = ∆t (a + u1∆t, b + u2∆t) f (a + u1∆t, b + u2∆t)

Between times 0 and ∆t, the change in altitude is
∆z = f (a + u1∆t, b + u2∆t) − f (a, b)

≈ fx(a, b) u1∆t + fy(a, b) u2∆t = ∇f (a, b) ·~u∆t

The horizontal change (in the xy plane) is
‖~u∆t‖ = ‖~u‖ ∆t = 1∆t = ∆t

The slope on the mountain at (x, y) = (a, b) in that cross-section is
Vertical change

Horizontal change
=
∆z
∆t
≈ ∇f (a, b) ·~u

As ∆t→ 0, this gives the instantaneous rate of change:
∇f (a, b) ·~u
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Directional derivatives — Second method

Let ~u = 〈u1, u2〉 be a unit vector, and travel on line~r(t) = 〈a, b〉+ t~u.
Time t = 0 corresponds to point P = (a, b).
Use the chain rule to find the instantaneous slope at time t = 0:

d
dt

f (~r(t))
∣∣∣∣
t=0

=
d
dt

f (〈a, b〉+ t~u)
∣∣∣∣
t=0

=
(
∇f ·~r ′(t))

)∣∣
t=0

= ∇f (a, b) ·~r ′(0)
= ∇f (a, b) ·~u
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Directional derivatives

The directional derivative of f (~x) in the direction ~u (a unit vector) is

D~u f (~x) =
d
dt

f (~x + t~u)
∣∣∣∣
t=0

(useful theoretically)

= ∇f(~x) ·~u (easier for computations)

Notation warning
Df for the derivative matrix and D~u f for directional derivative are
completely different, even though the notations look similar.
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Directional derivatives

The directional derivative of f (~x) in the direction ~u (a unit vector) is

D~u f (~x) = ∇f (~x) ·~u

Examples
Dı̂ f (a, b) = ∇f (a, b) · ı̂ =

〈
fx(a, b), fy(a, b)

〉
· ı̂ = fx(a, b)

D̂ f (a, b) = ∇f (a, b) · ̂ =
〈

fx(a, b), fy(a, b)
〉
· ̂ = fy(a, b)

Be careful: ~u must be a unit vector
D2ı̂ f (a, b) = ∇f (a, b) · 2ı̂ =

〈
fx(a, b), fy(a, b)

〉
· 2ı̂ = 2 fx(a, b)

ı̂ and 2ı̂ have the same direction, but this is not the slope; it’s off
by a factor of 2.
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Example

Find the directional derivative of f (x, y, z) = x2 − 3xy + z3 at the point
P = (1, 2, 3) in the direction towards Q = (6, 5, 4).

We’ll apply the formula D~u f = ~u · ∇f .

Gradient
The gradient (as a function):

∇f =
〈
2x − 3y,−3x, 3z2〉

The gradient at point P:

∇f (1, 2, 3) =
〈
2(1) − 3(2),−3(1), 3(32)

〉
= 〈−4,−3, 27〉
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Example

Find the directional derivative of f (x, y, z) = x2 − 3xy + z3 at the point
P = (1, 2, 3) in the direction towards Q = (6, 5, 4).

Direction vector
The vector from P to Q is

~v =
−→
PQ = 〈5, 3, 1〉

However, this is not a unit vector. It has length

‖~v‖ =
√

52 + 32 + 12 =
√

25 + 9 + 1 =
√

35

Unit vector:
~u =

~v
‖~v‖

=
〈5, 3, 1〉√

35
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Example

Find the directional derivative of f (x, y, z) = x2 − 3xy + z3 at the point
P = (1, 2, 3) in the direction towards Q = (6, 5, 4).

So far:

∇f (1, 2, 3) = 〈−4,−3, 27〉 ~u =
~v
‖~v‖

=
〈5, 3, 1〉√

35

The directional derivative at this point:

D~u f (1, 2, 3) = ~u · ∇f (1, 2, 3)

=
〈5, 3, 1〉√

35
· 〈−4,−3, 27〉 = 5(−4) + 3(−3) + 1(27)√

35

= −
2√
35
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Possible values of D~u f

f

u

∆

θ

For a function z = f (x, y) and a point P = (a, b), what are the possible
values of D~u f (a, b) as ~u varies over all directions?

D~u f = ~u · ∇f = ‖~u‖ ‖∇f‖ cos(θ)

~u is a unit vector, so ‖~u‖ = 1 and D~u f = ‖∇f‖ cos(θ).

As ~u varies, cos(θ) varies between ±1.

So D~u f varies between ±‖∇f‖.
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Special directions

P
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Contour map for part of a mountain
with altitude z = f(x, y)

At point P, which direction ~u is best for each scenario?
The Power Hiker wants the steepest uphill path.
The Power Skier wants the steepest downhill path.
The Lazy Hiker wants to avoid any elevation change.
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The Lazy Hiker
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To avoid elevation change, the lazy hiker walks along a level curve.
At point P, the direction ~u is tangent to the level curve, giving the
two options shown above.
No elevation change along this path, so

D~u f = 0 so ~u · ∇f = 0 so ~u ⊥ ∇f
So at any point P = (a, b), the gradient ∇f (a, b) is perpendicular to
the level curve.
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Direction of gradient vector
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∇f (a, b) is perpendicular to the contour through P = (a, b).
But which of these choices is it?
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Power Hiker
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D~u f = ~u · ∇f = ‖~u‖ ‖∇f‖ cos(θ) = ‖∇f‖ cos(θ)

As ~u varies, the maximum value of D~u f is + ‖∇f‖.
The maximum is when cos(θ) = 1, so θ = 0◦ = 0 radians.
Thus, ~u is a unit vector in the same direction as ∇f , perpendicular
to the level curve:

~u = ∇f/ ‖∇f‖
This is the direction of steepest ascent , or fastest increase.
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Power Skier
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D~u f = ~u · ∇f = ‖~u‖ ‖∇f‖ cos(θ) = ‖∇f‖ cos(θ)

As ~u varies, the minimum value of D~u f is − ‖∇f‖.
The minimum is when cos(θ) = −1, so θ = 180◦ = π radians.
Thus, ~u is a unit vector in the opposite direction of ∇f , still
perpendicular to the level curve:

~u = −∇f/ ‖∇f‖
This is the direction of steepest decent , or fastest decrease.
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Direction of gradient vector
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∇f (a, b) is perpendicular to the contour through P = (a, b).
It points to the side where f is increasing.

Prof. Tesler 2.6 Directional Derivatives Math 20C / Fall 2018 21 / 35



Example: f (x, y) = x2 + y2 + 10
What is the direction of steepest ascent at point P = (−3, 0)?
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~u = ∇f/ ‖∇f‖
∇f = 〈2x, 2y〉
∇f (−3, 0) = 〈−6, 0〉, with length ‖∇f (−3, 0)‖ = 6, so

~u =
〈−6, 0〉

6
= 〈−1, 0〉

Prof. Tesler 2.6 Directional Derivatives Math 20C / Fall 2018 22 / 35



Example: f (x, y) = x2 + y2 + 10
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Steepest ascent Steepest descent
~u = 〈−1, 0〉 ~u = − 〈−1, 0〉 = 〈1, 0〉
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Example: f (x, y) = x2 + y2 + 10
Direction of contour
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∇f (−3, 0) = 〈−6, 0〉 is perpendicular to the contour at point (−3, 0).
In 2D, the directions ⊥ 〈a, b〉 are multiples of 〈−b, a〉 (or 〈b,−a〉).
So 〈−0,−6〉 is tangent to the contour.
Unit vectors tangent to the contour are 〈0,±1〉.
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Example: f (x, y) = x2 + y2 + 10
Find the line tangent to the contour at (−3, 0)

∆
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Let ~r be a position vector along the line.
The tangent line is ⊥ ∇f (−3, 0) = 〈−6, 0〉, so

〈−6, 0〉 · (~r − 〈−3, 0〉) = 0

−6(x + 3) + 0(y − 0) = 0

−6(x + 3) = 0 x = −3
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Topographic maps: Sign of D~u f
Screenshots from GISsurfer, mappingsupport.com, c©OpenStreetMap

a⃗

b

c⃗

⃗

~a points uphill, so D~a f > 0 at the point shown.
~b is tangent to the contour, so D~b f = 0.
~c points downhill, so D~c f < 0.
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Topographic maps: Signs of fx and fy
Screenshots from GISsurfer, mappingsupport.com, c©OpenStreetMap

P

Q

Gradients at P, Q are perpendicular to the contours on the uphill
side.
At P = (a, b): fx(a, b) < 0 and fy(a, b) < 0.
At Q = (c, d): fx(c, d) < 0 and fy(c, d) > 0.
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Topographic maps: Steepest ascent path
Screenshots from GISsurfer, mappingsupport.com, c©OpenStreetMap

Path of steepest ascent: Draw a path starting at a point (yellow),
continually adjusting direction to stay perpendicular to the contour
in the uphill (increasing) direction.
Path of steepest descent: Similar but going downhill.
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Topographic maps: Maxima / Minima
Screenshots from GISsurfer, mappingsupport.com, c©OpenStreetMap

Contour map has closed curves encircling the mountain peaks
(where the function is maximum).
The same would happen with minimums.
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Topographic maps: Switchbacks
Screenshots from GISsurfer, mappingsupport.com, c©OpenStreetMap

It’s steepest where the contours are closest together.
The official hiking trails have switchbacks in the steepest regions.
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Level surface of f (x, y, z)

For z = f (x, y), contour maps have level curves f (x, y) = k.
∇f (a, b) is perpendicular to the level curve through (a, b).

For u = f (x, y, z), we get a level surface f (x, y, z) = k instead of a
level curve.
∇f (a, b, c) is perpendicular to the level surface through (a, b, c).

Example
For f (x, y, z) = x2 + y2 + z2, the level surface f (x, y, z) = k is a
sphere centered at (0, 0, 0) of radius

√
k, provided k > 0.

∇f (x, y, z) = 〈2x, 2y, 2z〉 is perpendicular to the sphere at (x, y, z).
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Level surfaces of f (x, y, z) = x2 + y2 + z2

Surfaces f (x, y, z) = k shown for k = 1, 2, 3, 4 from inside to out
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Level surface of f (x, y, z)

Consider the surface

x2 = 2x(y − z) + 9

What is the point (x, y, z) = (1, 2, )?
Plug x = 1, y = 2 into the above equation, and solve for z:

12 = 2(1)(2 − z) + 9

1 = 4 − 2z + 9 = 13 − 2z

2z = 13 − 1 = 12

z = 6
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Level surface of f (x, y, z)

Find the tangent plane to surface x2 = 2x(y−z)+9 at (x,y,z) = (1,2,6).
Rearrange equation into f (x, y, z) = constant:

x2 − 2x(y − z) = 9 so use f (x, y, z) = x2 − 2x(y − z).

Normal vector:

∇f = 〈2x − 2(y − z),−2x, 2x〉
∇f (1, 2, 6) = 〈2(1) − 2(2 − 6),−2, 2〉 = 〈10,−2, 2〉

Tangent plane ~n · (~r −~r0) = 0:

〈10,−2, 2〉 · (~r − 〈1, 2, 6〉) = 0

10(x − 1) − 2(y − 2) + 2(z − 6) = 0 10x − 2y + 2z = 18
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Comparing tangent plane formulas from 2.3 vs. 2.6
2.3. Tangent plane to z = f (x, y) at (x0, y0, z0)

z = z0 + fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0)

2.6. Tangent plane to g(x, y, z) = k at (x0, y0, z0)

~n · (~r −~r0) = 0, where ~r0 = 〈x0, y0, z0〉 and ~n = ∇g(x0, y0, z0).
This can be used even if you can’t explicitly solve for z in terms of x, y.

Connection

z = f (x, y) is equivalent to z − f (x, y)︸        ︷︷        ︸
call this g(x,y,z)

= 0

∇g(x, y, z) =
〈
−fx,−fy, 1

〉
.

~n = ∇g(x0, y0, z0) =
〈
−fx(x0, y0),−fy(x0, y0), 1

〉
The second formula ~n · (~r −~r0) = 0 expands as

−fx(x0, y0)(x − x0) − fy(x0, y0)(y − y0) + 1(z − z0) = 0,
which is equivalent to the first formula.
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