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Math 126 C
Worksheet 5

1. A harmonic function u(x, y) is a function with continuous second partials which
satisfies Laplace’s equation,

uxx + uyy ≡ 0.

(a) Is f(x, y) = x2 − 2y2 harmonic?

Solution: No ; fxx = 2, fyy = −4, and 2− 4 = −2 6= 0.

(b) Let g(x, y) = ln(
√
x2 + y2). Find the domain of g.

Solution: The punctured plane ; we need x2 + y2 > 0 for the
√
x2 + y2 to

make sense, so (0, 0) isn’t in the domain. The logarithm does not change this.

(c) Is g(x, y) harmonic?

Solution: Yes ; we compute

gx =
1√

x2 + y2
∂

∂x

√
x2 + y2 =

1√
x2 + y2

2x

2
√
x2 + y2

=
x

x2 + y2

gxx =
(x2 + y2)− x(2x)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

By symmetry, gyy = x2−y2
(x2+y2)2

, so gxx + gyy = 0.

(d) Find all local extrema for g.

Solution: Critical points occur when gx = x
x2+y2

= 0 and gy = y
x2+y2

= 0, i.e.
when x = y = 0, which is not in the domain. Since each local extrema occurs at
a critical point, there are none .
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2. (a) Suppose u is a harmonic function with uxx 6= 0 at each critical point. Can u have a
local maximum?

Solution: No . Compute D from the Second Derivatives Test; note that
uxx + uyy = 0 implies uyy = −uxx.

D = uxxuyy − u2xy = −u2xx − u2xy < 0.

Thus every critical point occurs at a saddle point, not a local maximum (or
minimum.) (If uxx = 0, we might have D = 0 if uxy were also 0, and the test
would give no information.)

(b) A version of the maximum principle for harmonic functions states that a harmonic
function achieves its absolute maximum on the boundary. Assume it for now.

Let h(x, y) = ex(sin y+cos y). Find the absolute maximum of this harmonic function
on the square {(x, y) | |x| ≤ 1, |y| ≤ 1}, without computing a partial derivative of h.
(Assume h is harmonic.)

Solution: By the maximum principle, we can check just the boundary of the
square. This is composed of the four lines (x, 1), (x,−1), (1, y), and (−1, y)
where −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. On these lines, we have

h1(x) = h(x, 1) = ex(sin 1 + cos 1)

h2(x) = h(x,−1) = ex(sin(−1) + cos(−1))

h3(y) = h(1, y) = e(sin y + cos y)

h4(y) = h(−1, y) = 1/e(sin y + cos y).

One sees h′1, h
′
2 6= 0 since ex 6= 0, so the first two have no critical points. However,

h′3 = cos y − sin y, so h3 has a critical point at y = π/4. Likewise h4 has a
critical point at y = π/4. We have h3(π/4) = e

√
2 and h4(π/4) =

√
2/e. The

boundaries of those curves are at x = ±1, y = ±1, and you can check numerically

that h(±1,±1) is always less than e
√

2 . This occurs at (1, π/4) .

(c) Does your solution to (a) prove the maximum principle? Why or why not?

Solution: No . As noted in the solution to (a), it might happen that all the
first partials of u vanish at a critical point, in which case D = 0 and the Second
Derivatives Test gives no information. Indeed, u(x, y) = x4 − 6x2y2 + y4 is such
a function. (0, 0) is a critical point, and every second partial is 0 here.

However, when (a) applies, we find that an absolute maximum must occur on
the boundary, since otherwise it would give a critical point, but by (a) all such
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points are saddle points, not maximums. So, (a) “almost” gives the maximum
principle.
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3. (a) Compute the tangent plane to h at the point from (2b).

Solution: Using the tangent plane formula at (1, π/4),

z − h(1, π/4) = hx(1, π/4)(x− 1) + hy(1, π/4)(y − π/4).

We have

hx = ex(sin y + cos y)

hy = ex(cos y − sin y),

so plugging things in to the above gives

z − e
√

2 = e
√

2(x− 1) + 0(x− π/4),

which simplifies to just z = xe
√

2 .

(b) In which direction should I travel to increase h the fastest, starting at the point
from (2b)? Can this direction be towards the origin? Why or why not?

Solution: Going in the y-direction gives a slope of 0 since hy(1, π/4) = 0. The
highest rate of increase must be in the ±x-direction. Since hx(1, π/4) > 0, it’s

the +x-direction .

Alternatively, consider a direction specified by (∆x,∆y) of unit length, i.e.
(∆x)2 + (∆y)2 = 1. We have the differential centered at (1, π/4) as ∆h =
(∆x)e

√
2. For what value of ∆x is this as large as possible, subject to the above

constraint? ∆x = 1, indicating we can increase h the most by moving in the
+x-direction, as suggested above.

4. (a) Find a (non-linear) polynomial p(x, y) with the same tangent plane as h at the point
from (2b).

Solution: We can start with the tangent plane z = xe
√

2 and add something
whose value and first partials all vanish at (1, π/4): (x− 1)2 + (y − π/4)2 works.

That is, p(x, y) = xe
√

2 + (x− 1)2 + (y − π/4)2 works.

(b) Repeat (a), but make the tangent planes agree at both the point from (2b) and at
the origin.

Solution: We need to compute the tangent plane at the origin. Using (3a)’s
techniques, this is z − 1 = x + y. For h and p to have the same tangent
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planes at (0, 0) and (1, π/4), we need p(0, 0) = 1, px(0, 0) = 1, py(0, 0) = 1;
p(1, π/4) = e

√
2, px(1, π/4) = e

√
2, py(1, π/4) = 0.

There are several ways to proceed. One is as follows: we had quite a bit of
freedom in our solution to (a). We could actually have added a(x− 1)2 + b(y −
π/4)2 + c(x − 1)3 for arbitrary constants a, b, c without changing the tangent
plane at (1, π/4). We have three additional constraints to get the tangent plane
at (0, 0) correct, so we should be able to choose a, b, c to satisfy them all. Let
p(x, y) = xe

√
2 + a(x− 1)2 + b(y − π/4)2 + c(x− 1)2(y − π/4)2, so we have

p(0, 0) = a+
bπ2

16
+
cπ2

16
= 1

px(0, 0) = −2a− cπ2

8
+ e
√

2 = 1

py(0, 0) = −bπ
2
− cπ

2
= 1.

One may solve this system and get

a = 1 +
π

8

b =
24− 8e

√
2

π2

c =
−24 + 8e

√
2

π2
− 2

π
.

In all, the following has the specified tangent planes:

p(x, y) = xe
√

2 +
(

1 +
π

8

)
(x− 1)2 +

24− 8e
√

2

π2
(y − π/4)2

+

(
−24 + 8e

√
2

π2
− 2

π

)
(x− 1)2(y − π/4)2.

(c) Use differentials to approximate the difference between your polynomial and h at
(0.1, 0.1). Does your polynomial approximate h well near the origin?

Solution: Differentials use the tangent plane approximation, and the closest
convenient point to (0.1, 0.1), (0, 0), was chosen so that p and h have the same
tangent planes there. Thus differentials will estimate the difference between the
two as 0 —a more subtle approach is needed. A “second-order” approximation
would work, though it’s beyond the scope of this course, so we’ll just note that
p(0.1, 0.1) ≈ 1.29705 while h(0.1, 0.1) ≈ 1.20998, so it seems the approximation
is relatively good.


