
Math 126 C Worksheet 5 Solutions
Posted 7/23/2013

Note: Send corrections, if any, to jps314@math.washington.edu.

(1) For simplicity say the circle is centered at the origin and lies in the plane. A parametrization coming
from polar coordinates is given by p(t) = (r cos(t), r sin(t)). For later convenience, compute

p′(t) = 〈−r sin(t), r cos(t)〉
p′′(t) = 〈−r cos(t),−r sin(t)〉

The speed is indeed constant: |p′(t)| =
√
r2 sin2(t) + r2 cos2(t) =

√
r2 = r. The direction of travel is

p′(t), which is perpendicular to the acceleration since p′(t) ·p′′(t) = r2 sin(t) cos(t)− r2 cos(t) sin(t) = 0.

At t = 0, we have p(0) = (r, 0), p′(0) = 〈0, r〉, and p′′(0) = 〈−r, 0〉. If you draw these three vectors out,
you’ll find p′′(0) is pointing toward the center of the circle, so it indeed points into the circle. The same
is true for every other value of t.

(2) On a straight line segment of a track, there is no acceleration (assuming the train is traveling at constant
speed, as in (a)). On a circular segment, there is acceleration perpendicular to the direction of motion.
At a juncture of straight and circular track, to stay on the track the train’s acceleration must suddenly
go from zero to some large amount. This imparts a huge impulse to the track, likely breaking it, causing
the train to continue along its original, linear path, so it leaves the track. (A ridiculously well-made
track would theoretically be strong enough to force the train to stay on it.)

(3) Let L1(x) be the curve on the line y = −x for x ≤ −1 and let L2(x) be the curve on the line y = x for
x ≥ 1. We want a new curve S(x) for −1 ≤ x ≤ 1 with nice properties. Explicitly,

L1(x) = (x,−x)

L2(x) = (x, x)

S(x) = (x, y(x))

where y(x) is a function we will determine.

For the curves to match up, we need (−1, 1) = L1(−1) = S(−1) = (−1, y(−1)), i.e. y(−1) = 1, and
similarly y(1) = 1. For the curves to “connect smoothly”, we need their tangent vectors to agree at the
points where they connect. We have

L′
1(x) = 〈1,−1〉
L′
2(x) = 〈1, 1〉

S′(x) = 〈1, y′(x)〉

Thus we need 〈1,−1〉 = L′
1(−1) = S′(−1) = 〈1, y′(−1)〉, so y′(−1) = −1, and similarly y′(1) = 1.

Further, we want to make the transition with “no sudden changes in acceleration”, so we want (0, 0) =
L′′
1(−1) = S′′(−1) = (0, y′′(−1)), i.e. y′′(−1) = 0, and similarly y′′(1) = 0.

(4) (a) Geometrically, an even polynomial is symmetric about the y-axis, and since the problem is symmetric
about the y-axis, you would naturally expect even polynomials to simplify the search.
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(b) An even polynomial of degree 4 is generally of the form

y(x) = ax4 + bx2 + c.

Our conditions on y are y(±1) = 1, y′(±1) = ±1, and y′′(±1) = 0. We see y′(x) = 4ax3 + 2bx and
y′′(x) = 12ax2 + 2b. Plugging in x = ±1 and using these conditions gives

y(±1) = a+ b+ c = 1

y(±1) = ±(4a+ 2b) = ±1

y(±1) = 12a+ 2b = 0

We may cancel the ±’s, which gives a system of three equations in three unknowns,

a+ b+ c = 1

4a+ 2b = 1

12a+ 2b = 0.

Using one of the standard techniques, one finds the unique solution as a = −(1/8), b = 3/4, c = 3/8,
so the polynomial is

y(x) = −(1/8)x4 + (3/4)x2 + (3/8).

A plot of this function shows that it is plausible.

(5) Recall the formula for the curvature of a graph:

κ(x) =
|y′′(x)|

[1 + (y′(x))2]3/2
.

Using the function above, we have y′(x) = −(1/2)x3 + (3/2)x, so y′′(x) = −(3/2)x2 + (3/2), so the
curvature is

κ(x) =
| − (3/2)x2 + (3/2)|

[1 + (−(1/2)x3 + (3/2)x)2]3/2
.

This may simplify, though we only need to compute the limit as x→ ±1. Note that κ(x) = κ(−x) from
the above formula, so we just compute

lim
x→1

κ(x) =
| − (3/2) + (3/2)|

[1 + (−(1/2) + (3/2))2]3/2

= 0.

(The denominator is non-zero at x = 1, so we don’t need to use L’Hopital’s rule or similar techniques;
we can just plug in x = 1.)
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