
Math 126 Final Review Sheet
By Josh Swanson Revised 8/17/2013

• The final will be on Friday, August 23rd, during lecture.

• The final will emphasize §15.4, 15.5, and the Taylor Notes. It will be comprehensive in
the sense that it will include questions tying together many topics from throughout the
quarter.

• You should bring a non-graphing, non-programmable calculator. You may not share
calculators during the exam.

• You may use a single hand-written 8.5” by 11” page of notes; you may write on both
sides.

1 Material Review

See Midterm 1 and 2 reviews. Topics not covered in those reviews are below.

1.1 Double Integrals in Polar Coordinates (§15.4)
Given a function f and a region R, the Cartesian integral of f over R is∫∫

R

f(x, y) dA.

If R can be easily expressed using polar coordinates (for instance, if R is the intersection of
certain circles), this integral can be converted to polar as follows:

(1) Replace f(x, y) with f(r cos(θ), r sin(θ)).

(2) Replace dA with r dr dθ.

(3) Find appropriate limits of integration which describe R using polar coordinates. For
instance, the unit circle would have limits θ = [0, 2π] and r = [0, 1]. This step typically
requires some creativity or geometric intuition; at a minimum you generally need to draw
R. See also Example 3 of §15.4.

Indeed, given a Cartesian integral of the above form, one can draw the limits of integration
in the xy-plane and convert the integral to polar. This is sometimes useful for evaluating
integrals, and you may be asked to do this on the exam. See WebAssign 15.4(12).
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1.2 Center of Mass (§15.5)
You are given a shape represented by a region D, and you are also given the density ρ(x, y)
of that shape at each point of D.

• The mass is m =
∫∫

D
ρ(x, y) dA .

• The moment about the x-axis is Mx =
∫∫

D
yρ(x, y) dA.

• The moment about the y-axis is My =
∫∫

D
xρ(x, y) dA.

• The center of mass is the point (x, y) given by

x = My

m
= 1

m

∫∫
D
xρ(x, y) dA, y = Mx

m
= 1

m

∫∫
D
yρ(x, y) dA.

Note: ρ could be doubled and the center of mass would not change. In general, we only
need to know ρ up to a multiplicative constant (eg. “proportional to” something) to
determine the center of mass; the constant will cancel when dividing My or Mx and m.

It’s often convenient to evaluate these integrals using polar coordinates.

2 Taylor Series Notes

2.1 Taylor Polynomials and Taylor’s Inequality, §1-3
Using integration by parts repeatedly, one can show that for any fixed b and any positive
integer n

f(x) = f(b) + f ′(b)(x− b) +
f ′′(b)

2
(x− b)2 + · · ·+ f (n)(b)

n!
(x− b)n +

1

n!

∫ x

b

f (n+1)(t)(x− t)n dt

This formula is complicated, so we hope it’s powerful (it is). Here f (n)(b) means the nth
derivative of f at b, n! means n · (n− 1) · (n− 2) · · · 2 · 1, with 0! = 1 by convention.

The terms before the integral make up the nth Taylor polynomial based at b for f(x):

Tn(x) = f(b) + f ′(b)(x− b) + f ′′(b)
2

(x− b)2 + · · ·+ f (n)(b)
n!

(x− b)n .

In sigma (Σ) notation, this is

Tn(x) =
∑n

k=0
f (k)(b)

k!
(x− b)k ,

where we interpret f (0) to mean f , and we take (x− b)0 = 1 (even at x = b).
Two cases are typically called out for special attention in this course:

T1(x) = f(b) + f ′(b)(x− b) , T2(x) = f(b) + f ′(b)(x− b) + f ′′(b)
2

(x− b)2

T2 is called the quadratic approximation for f based at b, or the second Taylor polynomial.
T1 is called the tangent line approximation for f based at b, or the first Taylor polynomial.

Tn approximates f , and we can say how good the approximation is using the first formula
in this section. Doing so gives the following:
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• Tangent line error bound: if |f ′′(t)| ≤M for all t in a fixed interval I containing b,
then for any x in I,

|f(x)− T1(x)| ≤ M
2
|x− b|2

• Quadratic approximation error bound: if |f ′′′(t)| ≤M for all t in a fixed interval
I containing b, then for any x in I,

|f(x)− T2(x)| ≤ M
6
|x− b|3

• Taylor’s inequality: if |f (n+1)(t)| ≤M for all t in a fixed interval I containing b, then
for any x in I,

|f(x)− Tn(x)| ≤ M
(n+1)!

|x− b|n+1

.

2.2 Basic Taylor Series, §4
The Taylor series for a function f(x) based at b is∑∞

k=0
f (k)(b)

k!
(x− b)k = limn→∞ Tn(x) ,

A Taylor series converges for some x if the limit above exists and is finite at that x. The
following are our “Basic Taylor Series”, which you are expected to know.

Function Series Converges for . . .

ex
∑∞

k=0
xk

k!
−∞ < x <∞

cos(x)
∑∞

k=0(−1)k x2k

(2k)!
−∞ < x <∞

sin(x)
∑∞

k=0(−1)k x2k+1

(2k+1)!
−∞ < x <∞

1
1−x

∑∞
k=0 x

k −1 < x < 1

The series for 1
1−x is called the geometric series.

2.3 Taylor Series Manipulations, §5
You can sometimes compute the Taylor series for a complicated function out of simpler Taylor
series. Here are a few tricks for doing so.

• Add series/multiply by a constant:

2ex − 3

1− x
= 2

∞∑
k=0

xk

k!
− 3

∞∑
k=0

xk

=
∑∞

k=0

(
2
k!
− 3
)
xk .

While ex converges for −∞ < x <∞, 1
1−x converges only for −1 < x < 1. The series

above then converges on the overlap, i.e. for −1 < x < 1 .
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• Substitution:

1

2x− 5
= −1

5
· 1

1− 2
5
x

= −1

5

∞∑
k=0

(
2

5
x

)k

=
∞∑
k=0

(
− 2k

5k+1

)
xk .

The series used converges for −1 < 2
5
x < 1, i.e. for −5

2
< x < 5

2
.

• Term-by-term differentiation:

1

(1− x)2
=

d

dx

(
1

1− x

)
=

d

dx

(
∞∑
k=0

xk

)
=
∞∑
k=0

d

dx
xk

=
∞∑
k=0

kxk−1 =
∞∑

k=−1

(k + 1)xk =
∞∑
k=0

(k + 1)xk .

In the second to last step, we reindexed the sum: we replaced k with k + 1. The lower
limit, k = 0, then becomes k + 1 = 0, i.e. k = −1. However, (k + 1)xk for k = −1 is 0,
so we can start the reindexed sum at k = 0.
1

1−x converges for −1 < x < 1, and it turns out in general that differentiating term-
by-term doesn’t change the “interval of convergence,” so the series converges for
−1 < x < 1 .

• Term-by-term integration:∫ x

0

e−t
2

dt =

∫ x

0

∞∑
k=0

(−t2)k

k!
dt =

∞∑
k=0

∫ x

0

(−1)k

k!
t2k dt

=
∞∑
k=0

(−1)k

(2k + 1) · k!
x2k+1 = x− x3

3
+
x5

10
+ · · · .

Like differentiation, this does not change the interval of convergence. Since the series
for ex converges for all x, the same is true of the series for e−t

2
, and hence the above is

valid for −∞ < x <∞ .

• You can read off Taylor polynomials from a Taylor series. For instance, since

1 + x+
x2

2
+
x3

6
+ · · ·

is the Taylor series for ex based at 0, we see T1(x) = 1 + x and T2(x) = 1 + x+ x2

2
are

the first and second Taylor polynomials for ex based at 0.
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