
Math 126 C Challenge Problems/Solutions
Problems Posted 8/14/2013
Solutions Posted 8/16/2013

1. Use Taylor’s Theorem on the arctan function to find and prove a simple infinite sum expression to
compute π. Can you calculate π to 50 digits this way?

Note that arctan(1) = π/4, so evaluating the Taylor series for arctan(x) at x = 1 will give a series for π/4,
hence for π.

Writing the Taylor series out, we have (hopefully!)

arctan(x) =

∞∑
k=0

arctan(k)(0)

k!
xk.

One can use Taylor’s Inequality to show that the error term goes to 0 for all real x, hence the above sum
is indeed correct. Conveniently, arctan(0) = 0, so the first term drops out. Since arctan′(x) = 1/(1 + x2),
we have arctan′(0) = 1. Fiddling with the derivatives for a while, you can discover a pattern (at least when
they’re evaluated at 0) which gives, after some simplification,

arctan(x) =

∞∑
k=0

(−1)k

2k + 1
x2k+1.

Plugging in x = 1 and multiplying by 4 gives the series

π = 4

∞∑
k=0

(−1)k

2k + 1
.

What if we cut off this sum at, say, k = 100? The Taylor’s Inequality bound mentioned above can give us
an idea of how close the approximation will be, which turns out to not be terribly accurate. Indeed, with
k = 100 we get 3.15149 . . ., which is only correct to the first decimal place.

It does turn out that if we want m correct digits, there is indeed some n such that if we cut off the sum
at k = n or later, we do get at least m correct digits. However, n gets very large compared to m for this
series, and there are much better (but more advanced) series available, some of which can even take n ≈ m
or better. �

2. (Tricky.) Is 1 + 1
2 + 1

3 + 1
4 + · · · finite or infinite? If finite, what is its value? If infinite, prove it.

Hint: One method is to consider integrals. There are many solutions.

Try adding the series up on your calculator. You might think it’s settling on a fixed value, but if you add
enough terms it’ll just keep increasing, albeit very slowly.

The full series is called the harmonic series; the partial sums
∑n

k=1
1
n are called harmonic numbers.

Proofs that the harmonic series sums to infinity are well-known. Wikipedia’s article on this series mentions
the two most popular proofs, which happen to be the main ones I’m familiar with.
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(1) First, the extremely clever, very elementary one:

1+

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

> 1 +

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ . . .

= 1 +

(
1

2

)
+

(
1

2

)
+

(
1

2

)
+ . . . =∞.

(2) Second, the integral test: using left Riemann sums, one can show that the given sum is at least as
large as

∫∞
1

1
x dx, which, using the logarithm function, is infinite. This proof is perhaps less desirable

in that it requires knowledge of the logarithm function, though it very strongly suggests the following
approximation:

n∑
k=1

1

k
≈ ln(n).

Indeed, this is a good approximation, and the difference
(∑n

k=1
1
k

)
− ln(n) happens to converge to a

finite number, γ, the “Euler–Mascheroni constant” or sometimes just “Euler’s Constant”; it happens
to be approximately 0.577 . . .. The legendary mathematician Leonhard Euler (“Oiler”) first described
the constant in 1735 and by 1781 he had calculated it to 16 digits. (Note: Euler was blind during the
last few decades of his life, including when this calculation was published. He was astonishing in many
ways.)

(3) A student’s solution used the Taylor series for − ln(1 − x), namely − ln(1 − x) =
∑∞

k=1
1
kx

k. Taking
x = 1 in this expression gives +∞ =

∑∞
k=1

1
k , proving divergence–except this isn’t a proof since there

are plenty of missing details. What we would like is the following:

+∞ = − ln(0) = lim
x→1−

− ln(1− x) = lim
x→1−

∞∑
k=1

1

k
xk

=

∞∑
k=1

lim
x→1−

1

k
xk =

∞∑
k=1

1

k
.

The first and second equalities come from basic properties of ln. The third equality uses the Taylor
series for − ln(1− x); this step needs justification, though one can use the error bound from our Taylor
Series notes to find that the error bound tends to zero as the number of terms in the Taylor series tends
to ∞, which justifies it. The fourth equality is the hard part. It follows from the following:

Theorem 1 (Abel’s Limit Theorem (Special Case)) Let ak for k = 0, 1, 2, . . . be a sequence of
non-negative real numbers. If

∑∞
k=0 ak <∞, then

lim
x→1−

∞∑
k=0

akx
k =

∞∑
k=0

lim
x→1−

akx
k =

∞∑
k=0

ak.

You can find proofs of this theorem in many places. The ones I’m familiar with make essential use of an
estimate obtained from the geometric series formula from an earlier challenge problem.

To wrap up the above proof, note we can only apply Abel’s Limit Theorem if the harmonic series con-
verges, but it diverges. Still, we have a proof by contradiction: assuming the harmonic series converged,
the above string of equalities holds, so +∞ =

∑∞
k=1

1
k , contradicting our assumption that the harmonic

series converged. So, it diverges, as claimed!
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