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1. Let p(z) = c0 + c1z + · · · + cnz
n be a polynomial with complex number coefficients ck, where z is a

complex number. Show that the real and imaginary parts of p, viewed as functions of x and y where
z = x + iy, are harmonic functions, i.e. they satisfy Laplace’s equation, uxx + uyy = 0.

We first verify this for p(z) = zk. Using the chain rule,

∂

∂x
(x + iy)k = k(x + iy)k−1 ∂

∂x
(x + iy) = k(x + iy)k−1

∂

∂x

(
∂

∂x
(x + iy)k

)
= . . . = k(k − 1)(x + iy)k−2

∂

∂y
(x + iy)k = k(x + iy)k−1 ∂

∂y
(x + iy) = k(x + iy)k−1i

∂

∂y

(
∂

∂y
(x + iy)k

)
= . . . = k(k − 1)(x + iy)k−2i2.

Since 1 + i2 = 1 − 1 = 0, adding these gives 0, so Laplace’s equation is satisfied. (Here we’ve implicitly
used the fact that, given p(x + iy) = u(x, y) + iv(x, y) where u, v are the real and imaginary parts of p,
respectively, ∂

∂xp = ∂
∂xu + i ∂

∂y , and that the chain rule works as one would expect.)
Next, note that we can multiply a harmonic function by a real number without changing the fact that it

satisfies Laplace’s equation. We can also add two harmonic functions and get a harmonic function similarly.
Altogether, ckz

k’s real and imaginary components are harmonic for each k, so their sum, p(z), has harmonic
real and imaginary components. �

2. A version of the minimum modulus principle says that if the real and imaginary components of a complex
function f(z) are harmonic, and the function is never 0, then an absolute minimum of |f(z)| on a bounded
domain occurs at a boundary point. Use this and (1) to prove the Fundamental Theorem of Algebra, that
every non-constant polynomial p(z) has at least one complex root.

Suppose to the contrary that we had some non-constant polynomial p(z) with no complex root. From (1),
its real and imaginary components are harmonic, so we can apply the minimum modulus principle—this is
where we use the assumption that p is never zero. Consider the domain of p to be the circle of radius R,
CR = {x+ iy | x2 + y2 ≤ R2}. We have some point zR on the boundary of CR such that |p(zR)| ≤ |p(z)| for
all |z| ≤ R—in words, zR gives |p(z)| its minimum value on CR.

However, say p(z) has highest-degree term cnz
n, where n ≥ 1 since p is assumed non-constant. Now for

|z| extremely large, the other terms of the polynomial contribute negligibly to |p(z)|. Indeed, for |z| large
enough, |p(z)| ≥ |cnzn|/2. For zR, this gives |p(zR)| ≥ |cn|Rn/2. But since |p(zR)| ≤ |p(z)| for all |z| ≤ R,
we have

|p(z)| ≥ |cn|Rn/2, if |z| ≤ R

This is true for every R; taking R →∞ forces |p(z)| =∞ for all z, which is a contradiction. So, p(z) must
have had a root after all. (We can recover the usual Fundamental Theorem of Arithmetic, that p has n roots
counting multiplicity, by repeating this argument on p(z)/(z − r) where r is a root, etc.) �
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