
Math 126 C Challenge Problems/Solutions
Problems Posted 7/24/2013
Solutions Posted 7/28/2013

1. Let f(x, y) = (x + iy)2. Show that
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= 2(x + iy).

(Identifying z with both (x, y) and x + iy, we may write f(z) = z2, and the right-hand side of the above
is 2z.)

Since (x + iy)2 = (x2 − y2) + i(2xy), we compute
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(2x + i(2y) + i(2y) + 2x)

= 2(x + iy).
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2. Verify the complex “power rule”:
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(x + iy)n = n(x + iy)n−1,

(Using z as above and defining d
dz := 1
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, this power rule becomes d
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sometimes called a Wirtinger derivative.)

We could expand out (x+ iy)n using the binomial theorem and use essentially the same derivation as above,
but that gets messy. Let’s instead use the chain rule (which holds for partial derivatives of complex-valued
functions):
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A more standard approach to these ideas is to use complex differentiation: define df
dz (z0) = limh→0

f(z0+h)−f(z0)
h ,

if it exists, where h is allowed to be a complex number. One can show that if the above limit exists for every
z0, then the result agrees with what you get by computing d

dz f using the Wirtinger derivative above. One of
the main ingredients of the equivalence is the Cauchy-Riemann equations from complex analysis, but they
are as usual is well beyond the scope of this course. �
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