Math 126 C Challenge Problems/Solutions Problems Posted 7/22/2013 Solutions Posted 7/24/2013

1. Using July 12th's Challenge Problem 1, compute the two square roots of a complex number x + iy in terms of polar coordinates. Define a function giving one of them; what is its domain?

A square root u + iv of x + iy by definition satisfies $(u + iv)^2 = x + iy$. Let's look at this in terms of polar coordinates. Let (r, θ) be the polar coordinates of x + iy and let (r', θ') be the polar coordinates of u + iv. From the referenced challenge problem, the square of u + iv has polar coordinates $(r'^2, 2\theta')$. Thus we require (r, θ) and $(r'^2, 2\theta')$ to represent the same Cartesian point. Since $r, r' \ge 0$, we must have $r' = \sqrt{r}$ (this is the usual square root of a non-negative number) and $2\theta' = \theta + 2\pi k$ for some integer k. That is, $\theta' = \theta/2 + \pi k$. Only k = 0 and k = 1 give different Cartesian points, so we have two candidates for (r', θ') :

$$(\sqrt{r}, \theta/2), \qquad (\sqrt{r}, \theta/2 + \pi).$$

Indeed, these are distinct: one is on the opposite side of the other, so long as $r \neq 0$; if r = 0, x + iy = 0 + 0i has a single complex square root, namely itself.

Let's define f(x, y) to give u + iv corresponding to the first choice above, $(\sqrt{r}, \theta/2)$. This makes sense: given (x, y), we may compute its polar coordinates as (r, θ) , compute $(\sqrt{r}, \theta/2)$, compute the Cartesian point that represents, and convert that to the complex number u + iv. But wait: what about -1? If we say -1 + 0ihas polar coordinates $(1, \pi)$, then the square root has polar coordinates $(1, \pi/2)$, which is 0 + i = i. However, if we say -1 + 0i has polar coordinates $(1, -\pi)$, then the square root has polar coordinates $(1, -\pi/2)$, which is 0 - i = -i. What went wrong?

In computing (r, θ) , we had many choices of θ . Often it does not matter which θ we pick, but for this application it does matter. To fix the problem, we can just say we'll pick θ in the range $-\pi < \theta \leq \pi$. The above procedure then defines a complex square root function for each complex number, so the domain is the entire plane.

2. Is it possible to define a continuous square root function on the entire complex plane?

The complex square root function defined above is defined in the entire complex plane, but it is not continuous. For points $-1 + \epsilon i$ with $\epsilon > 0$ small, θ is slightly under π , so the square root has angle very close to $\pi/2$, hence the square root is very close to *i*. However, for points $-1 - \epsilon i$ with $\epsilon > 0$ small, θ is slightly above $-\pi$, so the square root has angle very close to $-\pi/2$, hence the square root is very close to -i.

That is, we can find points near -1 which this function takes to very different values, so it is not continuous there. Indeed we can do the same for any negative real number-there's a whole line of discontinuities. Is it possible to fix this problem?

No. An intuitive sketch of an argument that can be made rigorous with a little real analysis is the following. At -1, you have to pick either i or -i as the square root. Picking -i forces you by continuity to pick square roots near -i for points near -1. Now travel counter clockwise around the unit circle-you'll be forced to pick a square root with polar angle $-\pi/4$ for -i, polar angle 0 for 1, polar angle $\pi/4$ for i, and $\pi/2$ for -1. But we already said the square root of -1 was -i, which has polar angle $-\pi/2$, not $\pi/2$, so by the time we wrap all the way around we've added π to the original polar angle, which must result in a discontinuity.