
Math 126 C Challenge Problems/Solutions
Problems Posted 7/15/2013
Solutions Posted 7/17/2013

1. Parameterize an “L”-shaped curve in the plane as follows:

r(t) =

{
(t, 0) if −1 ≤ t ≤ 0
(0, t) if 0 ≤ t ≤ 1

Graphically, this curve starts at (−1, 0), moves right at speed 1 until it hits the origin, suddenly turns
straight north, and stops when it hits (0, 1). Note that r′(t) exists for −1 < t < 1 except for at t = 0, when
the curve turns. Find a reparametrization of r such that the first derivative exists everywhere.

Since we can’t change the direction of r′(t) by a reparameterization, we have to scale r′(t) somehow in order
to get the derivative to exist at t = 0. In particular, if we shrink r′(t) to length zero as t approaches 0, the
derivative will exist. Explicitly, such a parameterization is given by t(s) = s3, i.e.

r(s) = r(t(s)) =

{
(s3, 0) if −1 ≤ s ≤ 0
(0, s3) if 0 ≤ s ≤ 1

since

r′(s) =

{
〈3s2, 0〉 if −1 ≤ s ≤ 0
〈0, 3s2〉 if 0 ≤ s ≤ 1

has dr/ds|s=0 = 0 on both pieces. Indeed, r′′(s = 0) = 0 as well, but r′′′(s = 0) is 〈6, 0〉 for the first piece
and 〈0, 6〉 for the second piece, so the third derivative does not exist even with this parametrization.

(Note: Some sources would not quite accept this as a reparameterization, since they would require the
change of variables function to have a differentiable inverse, whereas here the change of variables function has
derivative 0 at a single point (so the inverse has “derivative” ∞ there). The key property that the integral
of the original curve is the same as the integral of this curve is preserved, however, so in my mind a slightly
more general definition is best.) �

2. (Hard) Find a reparametrization as in (1) but where r(n)(s), the nth derivative of r at s, exists for all s
and for all n.

In general, a reparametrization is given by an increasing function t(s). In (1) we used t(s) = s3, which is
indeed increasing at every point. Note that t′(s) = 3s2 has t′(0) = 0 and t′′(0) = 0, at which points r′ and
r′′ existed since they were forced to be 0 on either piece. However, t′′′(0) = 6 6= 0, and r′′′ did not exist at
0. This suggests we want t(s) such that t(n)(0) = 0 for all integers n ≥ 1 and t(s) increasing. Suppose for
the moment we have such a function, where also t(0) = 0 for convenience. We can compute the derivativse
of the reparameterized curve at s = 0 and verify that it is indeed 0 on each piece; here’s the first derivative
verification, which is just the chain rule:

dr(t(s))

ds

∣∣∣∣
s=0

=
dr(t)

dt

∣∣∣∣
t=t(0)

dt(s)

ds

∣∣∣∣
s=0

=
dr(t)

dt

∣∣∣∣
t=0

0 = 0.
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(Strictly speaking, dr(t)/dt|t=0 does not exist, but we may apply the above reasoning rigorously to each
piece of r(t) and get 0 from both sides, so the overall derivative is in fact 0.) The general verification is the
same but more involved; it uses the generalized chain rule, which looks something like the binomial theorem.

Now, how do we construct the function t(s)? No polynomial will work since a degree n polynomial
has non-zero (constant) nth derivative. This may suggest we want a function going to zero “exponentially

quickly”. Explicitly, look at t(s) = e−1/s
2

(define t(0) = 0). If you plot this function, it looks like an inverted
bell curve–it is extremely flat near s = 0 where it hits 0, so it probably has the required t(n)(0) = 0 property.
We needed an increasing function t(s), and this isn’t increasing, but that’s easy to fix–just flip the left half
over the x-axis. This would give us a piecewise function, but a virtually equivalent approach is to just look
at t(s) = se−1/s

2

. A graph of this shows it to definitely be increasing (rigorously, it’s easy to show that the

first derivative is positive everywhere except 0). One can use the product rule to show that if e−1/s
2

has the

“derivatives-are-0-at-0” property, so does this t(s). So, it suffices to show that e−1/s
2

indeed has derivatives
all equal to 0 at s = 0.

If you compute a few derivatives of t, the following proposition is plausible:

Proposition 1 There are polynomials pn and qn such that

t(n)(s) =
pn(s)

qn(s)
e−1/s

2

Proof We use “mathematical induction”. Suppose you have an infinite number of statements to prove, one
for each value of n. You can prove them all by proving two things: (1) the 1st statement is true; (2) if the
nth statement is true, then the n+ 1st statement is true. For instance, given (1) and (2), the 3rd statement
is true since the 1st was true by (1), so by (2) the 2nd is true, so by (2) again the 3rd is true.

We prove these two pieces here. We actually start with n = 0, which is fine.

(1) Base case: For n = 0, the polynomials p0 = q0 = 1 work.

(2) Inductive case: Suppose the proposition is true for n. From the product, quotient, and chain rules, we
have

t(n+1)(s) =
d

ds
t(n)(s) =

d

ds

pn(s)

qn(s)
e−1/s

2

=
2pn(s)

s3qn(s)
e−1/s

2

+
qn(s)p′n(s)− pn(s)q′n(s)

q2n(s)
e−1/s

2

Finding a common denominator would give explicit formulas for pn+1 and qn+1, though existence is all
we need, so we stop here. 2 �

We can’t just plug in s = 0 to the above expressions (even if we could compute them quickly) since we
would divide by zero. If the limit as s → 0 of the above exists, though, one may show the derivative exists
there and is the limiting value. (See “Darboux’s Theorem” and discussions of discontinuities of derivatives.)

To simplify matters, set 1/s2 = y, i.e. take s = y−1/2 for y > 0. In light of the above proposition and
discussion, we now wish to compute

lim
y→∞

un(y)

vn(y)
e−y

where un and vn are polynomials in
√
y. (Check this yourself.)

Intuitively, the exponential factor should go to zero quickly enough to overwhelm the rate at which the
polynomial might go to infinity, since exponential decay beats polynomial growth. More rigorously, we have...

Proposition 2 For any real number k (positive, negative, etc.),

lim
y→∞

yke−y = 0
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Proof If k < 0, both terms tend to 0 anyway. If k = 0, yk = 1 and the result again follows. In the remaining
case, write the limit as limy→∞ yk/ey. This gives the indeterminate form ∞/∞, so apply L’Hopital’s Rule:

lim
y→∞

yk

ey
= lim

y→∞

kyk−1

ey

While yk−1 may still go to infinity, repeating this will eventually decrease the exponent on y to a non-positive
number, which we decided already was alright, giving the proposition. Induction can formalize this. 2 �

The denominator vn(y) is either a constant or gets very large as y → ∞, since it’s a polynomial, so we
can ignore it. The numerator un for y large enough is dominated by its highest-degree term, say yk, so
|un(y)| < 2yk. The limit we wished to compute is then 0 by Proposition 0.2. We restricted ourselves to
y > 0 here, which used s > 0, so we’ve actually computed

lim
s→0+

t(n)(s) = 0

But the original function t is even, from which it follows that

lim
s→0−

t(n)(s) = 0

Since the left and right limits exist and agree, it follows that

t(n)(0) = lim
s→0

t(n)(s) = 0,

which completes the proof. �
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