
Math 126 C Worksheet Solutions
Posted 8/6/2013

Note: Send corrections, if any, to jps314@math.washington.edu.

(1) We compute

gx =
1

y + 3z

⇒ gxx = 0

gxy = − 1

(y + 3z)2

gxz = − 3

(y + 3z)2

gy = − x

(y + 3z)2

⇒ gyy =
2x

(y + 3z)3

gyz =
6x

(y + 3z)3

gz = − 3x

(y + 3z)2

⇒ gzz =
18x

(y + 3z)2

Since gxy = gyx, gxz = gzx, and gyz = gzy here, this is all 3× 3 = 9 second partials.

(2) We compute

fx = 2y cos(2x− y)

fy = −y cos(2x− y) + sin(2x− y),

so the linearization at (1, 2) is

L(x, y) = f(1, 2) + fx(1, 2)(x− 1) + fy(1, 2)(y − 2)

= 4(x− 1)− 2(y − 2).

The approximation is then

f(1.02, 1.9) ≈ L(1.02, 1.9) = 4(0.02)− 2(−0.1) =
7

25
.

Note: Here, f(1, 2) = 0. In general it’s easy to forget to add f(a, b). For instance, at (1, 2), df =
4 dx − 2 dy, so df = 7/25, but this is not really the approximation for f(1.02, 1.9)—that is given by
f(1.02, 1.9) = f(1, 2) + df = 0 + 7/25 = 7/25.

(3) No single number should be favored over the others, so intuitively 4 + 4 + 4 = 12 should be the solution.
More rigorously, we have x+y+z = 12 and we want to minimize C(x, y, z) = x2 +y2 +z2. The variables
in the C function are not independent; solve for x in terms of y and z to reduce C to a function of two
independent variables, which we can then extremize as usual. We find x = 12− y − z so

C(y, z) = (12− y − z)2 + y2 + z2.

Find critical points:

Cy = −2(12− y − z) + 2y = 0

Cz = −2(12− y − z) + 2z = 0.

This is a (nondegenerate) linear system in two variables, so it has a unique solution. Plugging in
y = z = 4 directly works, so that must be the solution. (Alternatively you can solve the system as usual
and get y = z = 4.) So, the unique critical point is at y = z = 4, forcing x = 4. This is a minimum from
the Second Derivatives Test: Cyy = 4 = Czz, Cyz = 2 = Czy, so D = 16− 4 = 10 > 0 and Cyy > 0.

Strictly speaking we should check the boundaries of the region of points under consideration (namely,
the positive y and z axes, and the behavior as y and z go off to infinity). But, the question seems to
just want us to do the Second Derivatives Test part of the verification, so we stop here.
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(4) a • First way: ∫∫
R

x

1 + xy
dA =

∫ 1

0

∫ 2

0

x

1 + xy
dy dx

=

∫ 1

0

ln(1 + xy)|2y=0 dx

=

∫ 1

0

ln(1 + 2x) dx.

In general one can integrate the logarithm using integration by parts. Here, u = ln(1 + 2x),
dv = dx, so du = 2/(1 + 2x) and v = x. Now∫ 1

0

ln(1 + 2x) dx = ln(1 + 2x)x|10 −
∫ 1

0

2x

1 + 2x
dx

= ln(3)−
∫ 1

0

(
1− 1

1 + 2x

)
dx

= ln(3)− 1 +

∫ 1

0

1

1 + 2x
dx

= ln(3)− 1 +
ln(1 + 2x)

2

∣∣∣∣1
0

= ln(3)− 1 +
ln(3)

2

=
3 ln(3)

2
− 1.

(The second step could also be done with a u-substitution, u = 1 + 2x, since then 2x = u− 1.)

• The second way, dx dy, is more difficult and involves integrating ln(1+y)/y2, which uses repeated
integration by parts. You’re probably not intended to solve the problem this way since it would
be too time-consuming and error-prone, so such a solution is not included here.

b It is very important to draw the triangle correctly. In words, it is the half of the rectangle [0, 1]× [0, 2]
above the line y = 2x. Two solutions:

• dx dy: fix y and determine for which values of x the point (x, y) lies on the figure. To do so, draw
a horizontal (horizontal since y, height, is fixed) line through the triangle. The x-values hit will
be 0 on the left and on the right the x-value will satisfy y = 2x since (x, y) lies on the line y = 2x.
On the right, the x-value in terms of y is then y/2. y varies from 0 to 2, so we have∫ 2

0

∫ y/2

0

xy2 dx dy =

∫ 2

0

x2y2

2

∣∣∣∣y/2
x=0

dy

=

∫ 2

0

y4

8
dy =

y5

40

∣∣∣∣2
y=0

=
4

5
.

• dy dx: fix x and determine for which values of y the point (x, y) lies on the figure. To do so, draw
a vertical (vertical since x is fixed) line through the triangle. The y-values hit will be 2 at the
top and at the bottom the y-value will satisfy y = 2x since (x, y) lies on the line y = 2x. On the
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bottom, the y-value in terms of x is then 2x. x varies from 0 to 1, so we have∫ 1

0

∫ 2

2x

xy2 dy dx =

∫ 1

0

xy3

3

∣∣∣∣2
y=2x

dx

=

∫ 1

0

8x

3
− 8x4

3
dx =

(
4x2

3
− 8x5

15

)∣∣∣∣1
x=0

=
4

3
− 8

15
=

4

5
.

(5) We need to compute arc length, which requires computing the speed.

|r′(t)| = |〈et, 2et sin(t) + 2et cos(t), 2et cos(t)− 2et sin(t)〉|
= |et〈1, 2 cos(t) + 2 sin(t), 2 cos(t)− 2 sin(t)〉|

= et
√

1 + (2 cos(t) + 2 sin(t))2 + (2 cos(t)− 2 sin(t))2

= et
√

1 + 4 cos2(t) + 8 cos(t) sin(t) + 4 sin2(t) + 4 cos2(t)− 8 cos(t) sin(t) + 4 sin2(t)

= et
√

1 + 4 + 4

= 3et.

The arc length s(t) is measured from the point (1, 0, 2), which corresponds to t = 0. So by definition of
arc length, we have

s(t) =

∫ t

0

|r(u)| du

=

∫ t

0

3eu du

= 3eu|t0
= 3et − 3 = 3(et − 1).

(The integral starts at 0 since the arc length is measured from a point corresponding to t = 0.) Solving
for t in terms of s gives

et =
s

3
+ 1

⇒ t = ln
(s

3
+ 1
)
.

Substituting this into the original function (and pulling out et from each term for convenience) gives

r(s) =
(s

3
+ 1
) [

i + 2 sin ln
(s

3
+ 1
)
j + 2 cos ln

(s
3

+ 1
)
k
]
.
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