
Prof. Perkins Spring 2009 Math 126 Midterm 1 Solutions
Posted 7/16/2013

Note: Send corrections, if any, to jps314@math.washington.edu.

(1) Recall the formula for the slope of a polar curve,

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

.

Here r = eθ implies dr/dθ = eθ. Applying the formula and canceling the eθ’s gives a slope of

sin θ + cos θ

cos θ − sin θ
.

We need to know when this is zero, which occurs when the numerator is zero. (Note: if cos θ = sin θ
we divide by 0, but for these values the numerator is non-zero, so these are vertical tangent lines.) One

computes sin θ + cos θ = 0 for 0 ≤ θ ≤ 2π for θ = 3π/4, 7π/4 .

(2) Recall the slope formula for a parametric curve in the plane,

dy

dx
=
dy/dt

dx/dt
.

Also recall the second derivative formula for such a curve,

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

.

The curve is concave up if d2y
dx2 > 0. Noting that dx/dt = 2t, dy/dt = 3t2 − 12, one finds with the above

formulas that
d2y

dx2
=

3t2 + 12

4t3
.

The numerator is always positive. The denominator is positive for t > 0 and negative for t < 0; at t = 0,
the curve has a vertical tangent line, and in any case is not concave up there. So, the curve is concave
up precisely for t > 0 .

(3) Recall the arc length formula, ∫ t1

t0

|r′(t)| dt.

The point (0, 0) corresponds to t = 0, and (2, 12) corresponds to t = 2 (check this for yourself). One
computes

|r′(t)| = 3(t2 + 1)

so the integral above gives 14 .

(4) Several solutions. One is to rewrite the nearly symmetric equations in standard form and convert to
vector form:

x− 5

−3
=
y − 4

−5
=
z + 2

7
,

x− 4

−1
=
y + 7

3
=
z − 3

1

⇒r(t) = 〈5, 4,−2〉+ t 〈−3,−5, 7〉 , s(u) = 〈4,−7, 3〉+ u 〈−1, 3, 1〉 .
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Supposing for some t and u we have r(t) = s(u) gives a system of three equations in two unknowns:

5− 3t = 4− u
4− 5t = −7 + 3u

−2 + 7t = 3 + u.

Solving them gives a unique solution of t = 1, u = 2, corresponding to the point r(1) = s(2) = 〈2,−1, 5〉 .

(5) The point (3, 0, 0) corresponds to t = −1; note that t = 1 corresponds to (3, 0, ln(5)). Compute the
direction vector of the tangent line:

v = r′(−1) =

〈
t√

t2 + 8
, tπ cos(πt) + sin(πt),

2

2t+ 3

〉∣∣∣∣
t=−1

=

〈
−1

3
, π, 2

〉
.

Since (3, 0, 0) is on the line, it has vector form L(t) = 〈3, 0, 0〉+ t
〈
− 1

3 , π, 2
〉
. In parametric form, this is

x(t) = 3− t
3 , y(t) = πt, z(t) = 2t.

(6) The line of intersection has direction vector given by the cross product of the normals of the planes.
These are 〈1, 0, 0〉 and 〈0, 1, 1〉, respectively, and their cross product is v = 〈0,−1, 1〉. We can find a point
on the line of intersection by inspection—it must have x coordinate 3 and y + z = 2, so, for instance,
r0 = 〈3, 1, 1〉 works.

Now, how does one find the distance between a line and a point? I wrote up two methods for Challenge
Problem 1(a) at http://www.math.washington.edu/~jps314/m126/cp/cp0708.pdf. The distance be-
tween a point P and a line with direction vector v with some point r0 on the line is then

|(P− r0)− projv(P− r0)|.

Here, with P = 〈2, 1,−1〉 given, we have P − r0 = 〈−1, 0,−2〉 and one can compute the projection as
〈0, 1,−1〉. The distance is then

| 〈−1,−1,−1〉 | =
√

3.
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