
14.4 and 14.7 Review

This review sheet discusses, in a very basic way, the key concepts from these sections. This review is
not meant to be all inclusive, but hopefully it reminds you of some of the basics. Please notify me if
you find any typos in this review.

1. 14.4 Tangent Planes: Know how to find a tangent plane and understand it’s basic uses in
linear approximation and differentials.

(a) The Tangent Plane Equation for the function z = f(x, y) where (x0, y0, z0) is given by

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

So you have to first find the partial derivatives and then plug in the values of (x0, y0).

(b) Since z0 = f(x0, y0) and z = z0 + fx(x0, y0)(x− x0) + fy(x0, y0)(y− y0), we can rewrite the
tangent plane as

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0),

which we call the tangent plane approximation or the linear approximation of f(x, y)
based at (x0, y0).
If (x, y) is “near” (x0, y0), then

f(x, y) ≈ L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Here is a linear approximation example:
Find the linear approximation for f(x, y) = x cos(y + 2x) + y2 based at (−1, 2) and use it
to approximate the value of (−0.9, 2.05).
ANSWER:

i. First we find the tangent plane by computing the partial derivatives and get the z value:

fx(x, y) = cos(y + 2x)− 2x sin(y + 2x) fy(x, y) = −x sin(y + 2x) + 2y
fx(−1, 2) = cos(0)− 2(−1) sin(0) = 1 fy(−1, 2) = −(−1) sin(0) + 4 = 4
z0 = f(−1, 2) = − cos(0) + 4 = 3

So the tangent line approximation is:

z = 3 + 1(x− (−1)) + 4(y − 2) = 3 + (x + 1) + 4y − 8 = x + 4y − 4.

ii. Now we can approximate the value of f(−0.9, 2.05) by using the height on the tangent
plane:

z = (−0.9) + 4(2.05)− 4 = 3.3.

(Note that this is very close to the actual value f(−0.9, 2.05) = 3.33047882.

(c) The total differential, dz, expresses the tangent plane in terms of the amount of change
in x, y, and z. The actual changes measured from the graph of the function f(x, y) are
called δx, δy, and δz. The changes measured on the tangent plane are called dx, dy and dz.
You our problems δx = dx and δy = dy. Rewriting the tangent plane equation in terms of
differentials we obtain:

dz = fx(x0, y0)dx + fy(x0, y0)dy =
∂z

∂x
dx +

∂z

∂y
dy.

Note: As with the tangent line approximation, this only gives an estimation of the actual
change in z.
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Here is a differentials example:
The volume of a cylinder is given by V (r, h) = πr2h. If you manufacture a cylinder that has
radius of 3 inches with maximum error of 0.1 inches and height of 8 inches with maximum
error of 0.2 inches, given an estimation for maximum error for the volume using differentials.
ANSWER:

i. We want to compute dV when r = 3, dr = 0.1, h = 8, and dh = 0.2.
ii. First we find the total differential by computing the partial derivatives:

Vr(r, h) = 2πrh Vh(r, h) = πr2

Vr(3, 8) = 2π(3)(8) = 48π Vh(3, 8) = π(3)2 = 9π

Note that the total differential is

dV = 2πrhdr + πr2dh.

iii. Now we can approximate error to get

dV = 48π(0.1) + 9π(0.2) = 6.6π ≈ 20.7345.

So the volume can be off by about 20.7 in3.
(Aside: Note at r = 3, h = 8 the actual volume is 72π ≈ 226.19467 and at r = 3.1,
h = 8.2 the actual volume is 78.802π ≈ 247.5638. Thus, the actual worst error is
247.5638− 226.19467 ≈ 21.3691).

2. 14.7 Maximum and Minimum Value: Be able to find critical points and classify them. Also
be able to find absolute maxima and minima.

(a) To find the critical points, set fx(x, y) and fy(x, y) both equal to zero and solve them
simulaneously. Any points where fx or fy is undefined is also called a critical point.

Here is a finding critical points example:
Find the critical points for f(x, y) = x2 − 8y3 + 4xy + 1.
ANSWER:

i. Find the partial derivatives and set them equal to zero:

fx(x, y) = 2x + 4y = 0 fy(x, y) = −24y2 + 4x = 0
⇒ x = −2y ⇒ x = 6y2

Now combine to get ⇒ −2y = 6y2

0 = 6y2 + 2y
0 = 2y(3y + 1)
y = 0 or y = −1/3

go back to get corresponding x values x = 0 or x = 2/3

The critical points are (x, y) = (0, 0) and (x, y) = (2/3,−1/3).

(b) Be able to use the second derivative test to classify whether the critical point gives a
local maximum, local minimum, or a saddle point.
Let (a, b) be a critical point and define

D = D(a, b) = fxx(a, b)fyy(a, b)− [fxy(a, b)]2,

i. If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.
ii. If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.
iii. If D < 0, then (a, b) is a saddle point.
iv. If D = 0, then the test is inconclusive and you will need to use other methods to classify

the point.
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Here is a second derivative test example:
Classify the critical points for f(x, y) = x2 − 8y3 + 4xy + 1.
ANSWER:

i. In the last example we found that the critical points are (0, 0) and (2/3,−1/3).
ii. We need to compute the second partial derivatives to find D.

fxx(x, y) = 2 fyy = −48y fxy = 4

Thus, we have
D(x, y) = 2(−48y)− 42 = −96y − 16.

iii. The point (0, 0) gives D = −96(0)− 16 = −16. So D < 0, which means that (0, 0) is a
saddle point.

iv. The point (2/3,−1/3) gives D = −96(−1/3)− 16 = 16. So D > 0. So we need to check
fxx(2/3,−1/3) = 2 > 0, which means that f(2/3,−1/3) is a local minimum. (or we
could say that a local minimum occurs at (2/3,−1/3).

(c) All Absolute Maximum and Minimum Values occur either at a critical point or on
the boundary of the given region. So to find the absolute maximum and minimum values:

i. Find the critical values in the region and plug them into f(x, y).
ii. Find formulas for each part of boundary and find values of f(x, y) at these boundary

points.
iii. Absolute max = biggest output, Absolute min = smallest output

The hardest part is often checking the boundaries. These are long problems because they
have lots of steps. However, sometimes you can use some common sense to eliminate the
need to check the boundary.

Here is a full absolute maximum/minimum example:
Find the absolute maximum and absolute minimum of f(x, y) = 1

3x3 + 3y2 − x over the
rectangular region R = {(x, y)|0 ≤ x ≤ 3,−1 ≤ y ≤ 1}.

i. The critical values occur when x2 − 1 = 0 and 6y = 0. This only happens when
(x, y) = (−1, 0) and (x, y) = (1, 0). The point (1, 0) is the only critical point in the
region. The height of the function at this point is f(1, 0) = −2/3.

ii. Now we have to consider all four sides of the rectangle (you should draw it):
A. y = −1 and 0 ≤ x ≤ 3: With y = −1, the function becomes f(x,−1) = 1

3x3 +
3− x The absolute max/min values of this one variable function can be found with
Calculus I techniques: That is, (i) find the critical values and plug them into the
function (ii) plug the endpoints into the function (iii) biggest output is the abs.
max, smallest output is the abs. min.
(i) Critical Numbers

d

dx
(
1
3
x3 + 3− x) = x2 − 1 = 0

Critical Numbers: x = ±1. Only x = 1 is in the domain.

f(1,−1) = 7/3 = 2.3̄

(ii) Endpoints
f(0,−1) = 3 f(3,−1) = 9

(iii) Absolute Min/Max Over this Side
So the absolute min and absolute max on this side of the boundary are 9 and 7/3
(respectively). And they occur at (3,-1) and (1,-1) (respectively). Use the same
process on the next three regions.
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B. x = 3 and −1 ≤ y ≤ 1: With x = 3, the function becomes f(3, y) = 6 + 3y2

C. y = 1 and 0 ≤ x ≤ 3: With y = 1, the function becomes f(x, 1) = 1
3x3 + 3− x

D. x = 0 and −1 ≤ y ≤ 1: With x = 0, the function becomes f(0, y) = 3y2

iii. From this we find that the absolute max is

f(3, 1) = 9

The absolute min is
f(1,−1) = 7/3.
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