
Math 126 Final Review Sheet
By Josh Swanson Revised 10/2/2013

1 Material Review

See Midterm 1 and 2 reviews. Topics not covered in those reviews are below.

1.1 Double Integrals in Polar Coordinates (§15.4)
Given a function f and a region R, the Cartesian integral of f over R is∫∫

R

f(x, y) dA.

If R can be easily expressed using polar coordinates (for instance, if R is the intersection of
certain circles), this integral can be converted to polar as follows:

(1) Replace f(x, y) with f(r cos(θ), r sin(θ)).

(2) Replace dA with r dr dθ.

(3) Find appropriate limits of integration which describe R using polar coordinates. For
instance, the unit circle would have limits θ = [0, 2π] and r = [0, 1]. This step typically
requires some creativity or geometric intuition; at a minimum you generally need to draw
R. See also Example 3 of §15.4.

Indeed, given a Cartesian integral of the above form, one can draw the limits of integration
in the xy-plane and convert the integral to polar. This is sometimes useful for evaluating
integrals, and you may be asked to do this on the exam. See WebAssign 15.4(12).

1.2 Center of Mass (§15.5)
You are given a shape represented by a region D, and you are also given the density ρ(x, y)
of that shape at each point of D.

• The mass is m =
∫∫

D
ρ(x, y) dA .

• The moment about the x-axis is Mx =
∫∫

D
yρ(x, y) dA.

• The moment about the y-axis is My =
∫∫

D
xρ(x, y) dA.
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• The center of mass is the point (x, y) given by

x = My

m
= 1

m

∫∫
D
xρ(x, y) dA, y = Mx

m
= 1

m

∫∫
D
yρ(x, y) dA.

Note: ρ could be doubled and the center of mass would not change. In general, we only
need to know ρ up to a multiplicative constant (eg. “proportional to” something) to
determine the center of mass; the constant will cancel when dividing My or Mx and m.

It’s often convenient to evaluate these integrals using polar coordinates.

2 Taylor Series Notes

2.1 Taylor Polynomials and Taylor’s Inequality, §1-3
Using integration by parts repeatedly, one can show that for any fixed b and any positive
integer n

f(x) = f(b) + f ′(b)(x− b) +
f ′′(b)

2
(x− b)2 + · · ·+ f (n)(b)

n!
(x− b)n +

1

n!

∫ x

b

f (n+1)(t)(x− t)n dt

This formula is complicated, so we hope it’s powerful (it is). Here f (n)(b) means the nth
derivative of f at b, n! means n · (n− 1) · (n− 2) · · · 2 · 1, with 0! = 1 by convention.

The terms before the integral make up the nth Taylor polynomial based at b for f(x):

Tn(x) = f(b) + f ′(b)(x− b) + f ′′(b)
2

(x− b)2 + · · ·+ f (n)(b)
n!

(x− b)n .

In sigma (Σ) notation, this is

Tn(x) =
∑n

k=0
f (k)(b)

k!
(x− b)k ,

where we interpret f (0) to mean f , and we take (x− b)0 = 1 (even at x = b).
Two cases are typically called out for special attention in this course:

T1(x) = f(b) + f ′(b)(x− b) , T2(x) = f(b) + f ′(b)(x− b) + f ′′(b)
2

(x− b)2

T2 is called the quadratic approximation for f based at b, or the second Taylor polynomial.
T1 is called the tangent line approximation for f based at b, or the first Taylor polynomial.

Tn approximates f , and we can say how good the approximation is using the first formula
in this section. Doing so gives the following:

• Tangent line error bound: if |f ′′(t)| ≤M for all t in a fixed interval I containing b,
then for any x in I,

|f(x)− T1(x)| ≤ M
2
|x− b|2
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• Quadratic approximation error bound: if |f ′′′(t)| ≤M for all t in a fixed interval
I containing b, then for any x in I,

|f(x)− T2(x)| ≤ M
6
|x− b|3

• Taylor’s inequality: if |f (n+1)(t)| ≤M for all t in a fixed interval I containing b, then
for any x in I,

|f(x)− Tn(x)| ≤ M
(n+1)!

|x− b|n+1

.

2.2 Basic Taylor Series, §4
The Taylor series for a function f(x) based at b is

∑∞
k=0

f (k)(b)
k!

(x− b)k = limn→∞ Tn(x) ,

A Taylor series converges for some x if the limit above exists and is finite at that x. The
following are our “Basic Taylor Series”, which you are expected to know.

Function Series Converges for . . .

ex
∑∞

k=0
xk

k!
−∞ < x <∞

cos(x)
∑∞

k=0(−1)k x2k

(2k)!
−∞ < x <∞

sin(x)
∑∞

k=0(−1)k x2k+1

(2k+1)!
−∞ < x <∞

1
1−x

∑∞
k=0 x

k −1 < x < 1

The series for 1
1−x is called the geometric series.

2.3 Taylor Series Manipulations, §5
You can sometimes compute the Taylor series for a complicated function out of simpler Taylor
series. Here are a few tricks for doing so.

• Add series/multiply by a constant:

2ex − 3

1− x
= 2

∞∑
k=0

xk

k!
− 3

∞∑
k=0

xk

=
∑∞

k=0

(
2
k!
− 3
)
xk .

While ex converges for −∞ < x <∞, 1
1−x converges only for −1 < x < 1. The series

above then converges on the overlap, i.e. for −1 < x < 1 .
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• Substitution:

1

2x− 5
= −1

5
· 1

1− 2
5
x

= −1

5

∞∑
k=0

(
2

5
x

)k

=
∞∑
k=0

(
− 2k

5k+1

)
xk .

The series used converges for −1 < 2
5
x < 1, i.e. for −5

2
< x < 5

2
.

• Term-by-term differentiation:

1

(1− x)2
=

d

dx

(
1

1− x

)
=

d

dx

(
∞∑
k=0

xk

)
=
∞∑
k=0

d

dx
xk

=
∞∑
k=0

kxk−1 =
∞∑

k=−1

(k + 1)xk =
∞∑
k=0

(k + 1)xk .

In the second to last step, we reindexed the sum: we replaced k with k + 1. The lower
limit, k = 0, then becomes k + 1 = 0, i.e. k = −1. However, (k + 1)xk for k = −1 is 0,
so we can start the reindexed sum at k = 0.
1

1−x converges for −1 < x < 1, and it turns out in general that differentiating term-
by-term doesn’t change the “interval of convergence,” so the series converges for
−1 < x < 1 .

• Term-by-term integration:∫ x

0

e−t
2

dt =

∫ x

0

∞∑
k=0

(−t2)k

k!
dt =

∞∑
k=0

∫ x

0

(−1)k

k!
t2k dt

=
∞∑
k=0

(−1)k

(2k + 1) · k!
x2k+1 = x− x3

3
+
x5

10
+ · · · .

Like differentiation, this does not change the interval of convergence. Since the series
for ex converges for all x, the same is true of the series for e−t

2
, and hence the above is

valid for −∞ < x <∞ .

• You can read off Taylor polynomials from a Taylor series. For instance, since

1 + x+
x2

2
+
x3

6
+ · · ·

is the Taylor series for ex based at 0, we see T1(x) = 1 + x and T2(x) = 1 + x+ x2

2
are

the first and second Taylor polynomials for ex based at 0.
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