Math 126 Challenge Problems/Solutions

Problems Posted 10/29/2013
Solutions Posted 10/31/2013

1. Given f(z) smooth, find a polynomial which agrees with f at 0 and has the same first n derivatives as
f at 0. That is, find p such that p®)(0) = f*)(0) for 0 < k < n. (“Smooth” means f has derivatives of all
orders at all points.)

Say p(z) = co + 1@ + cax? + - - - + ¢, z" for some constants ¢, that we’ll have to determine. Since p(0) = ¢y,
we need ¢g = f(0) to get the Oth derivatives to match up. Since p'(x) = ¢1 + 2cox + - - -, we have p/'(0) = ¢1,
so we need p'(0) = ¢; = f/(0). Similarly p”(z) = 2¢o + x(---) forces p”(0) = 2¢5 = f"(0). Repeating this,
one finds in general the condition to get the kth derivative of p to agree with the kth derivative of f at 0 is

p(k) (0) = kleg, = f(k)(()),

where k! = k x (k—1) x ... x 1 is the factorial function, and for convenience we say 0! = 1. Solving for ¢
and substituting, the polynomial is just
f(0) | f(0)

B f"(0) 5
p(x) = ol + T T+ 51 i+ ...+ ]

)

xT.

Strictly speaking, we could add higher order terms like 22" to the end without messing up the first n
derivatives’ values at 0, so there are infinitely many answers. However, the Oth through nth coefficients are
uniquely determined by the given condition. [

2. Now take f(z,y) smooth. Find a polynomial in = and y such that f and p agree up to second partials
at the origin, i.e. the following hold at (0, 0):

e f=p
i fx:vafy:py

4 fxy = Pzy; fmc = Pz, fyz = Pyzx> fyy = Pyy

(“Smooth” means f has partial derivatives of all orders at all points.)

Say
p(z,y) = o0 + €107 + Co1y + €113y + 2,02 + co2y® +

We have p(0,0) = ¢p,0. One can compute
Py =C1,0+ 11y + 2c20z + (- - ),

where every term in (---) has at least one x or y in it. So, p;(0,0) = ¢1,0. Similarly, one can compute the
other partials in terms of just the first six constants listed above:

Py(0,0) = co1
P2 (0,0) = 220
pfy(o’ 0) =C1,1= pym(o’ O)
Pyy(0,0) = 2¢0 2



Our polynomial is then

p(m,y) = f(oa 0) + fz(0,0)l‘ + fy(0,0)y + fzy(oa O)a:y + wyﬁ + wy?

It happens that we can write this nicely using matrices (and dropping the (0, 0) from the notation after the

partials): p(x,y) = £0,0)+ (fo fy) (i) + % (z v) (fil g;) (5)

(Expand it out and check for yourself!)

e The row vector in the middle term is called the “Jacobian” and determines the behavior of f “up
to first order”. (In this particular case, the Jacobian and the “gradient” are the same thing.) The
Jacobian appears in the multivariable change of variables formula; we’ll encounter a special case of this
soon.

e The matrix in the right term is called the “Hessian” and determines the behavior of f “up to second
order”. It appears when more careful approximation than just using the Jacobian is needed.

The Hessian appears in the “Second Derivatives Test”. This is no coincidence. Suppose (0,0) is a
critical point of f, so f, = f, = 0 at (0,0). Since we only want to know if (0,0) is a local max, min,
or saddle of p, we may just as well assume f(0,0) = 0. Our polynomial is then

e =36 0 (5 1) ()

Applying a little linear algebra involving eigenvalues and eigenvectors to this expression gives precisely
the statement of the Second Derivatives Test.

With more careful reasoning, one can show that the behavior of p in this regard is the same as the
behavior of the function f it approximates. A careful treatment of these ideas requires an estimate of
just how well p approximates f near (0,0). At the end of the quarter, we’ll do some estimation of this
form for functions of a single variable.

Again one can add more higher order monomials to the end of p above, so there are technically an infinite
number of solutions. [



