
Math 126 Challenge Problems/Solutions
Problems Posted 10/29/2013
Solutions Posted 10/31/2013

1. Given f(x) smooth, find a polynomial which agrees with f at 0 and has the same first n derivatives as
f at 0. That is, find p such that p(k)(0) = f (k)(0) for 0 ≤ k ≤ n. (“Smooth” means f has derivatives of all
orders at all points.)

Say p(x) = c0 + c1x+ c2x
2 + · · ·+ cnx

n for some constants ck that we’ll have to determine. Since p(0) = c0,
we need c0 = f(0) to get the 0th derivatives to match up. Since p′(x) = c1 + 2c2x+ · · · , we have p′(0) = c1,
so we need p′(0) = c1 = f ′(0). Similarly p′′(x) = 2c2 + x(· · · ) forces p′′(0) = 2c2 = f ′′(0). Repeating this,
one finds in general the condition to get the kth derivative of p to agree with the kth derivative of f at 0 is

p(k)(0) = k!ck = f (k)(0),

where k! = k × (k − 1) × . . .× 1 is the factorial function, and for convenience we say 0! = 1. Solving for ck
and substituting, the polynomial is just

p(x) =
f(0)

0!
+

f ′(0)

1!
x +

f ′′(0)

2!
x2 + . . . +

f (n)(0)

n!
xn. �

Strictly speaking, we could add higher order terms like x2n to the end without messing up the first n
derivatives’ values at 0, so there are infinitely many answers. However, the 0th through nth coefficients are
uniquely determined by the given condition. �

2. Now take f(x, y) smooth. Find a polynomial in x and y such that f and p agree up to second partials
at the origin, i.e. the following hold at (0, 0):

• f = p

• fx = px, fy = py

• fxy = pxy, fxx = pxx, fyx = pyx, fyy = pyy

(“Smooth” means f has partial derivatives of all orders at all points.)

Say
p(x, y) = c0,0 + c1,0x + c0,1y + c1,1xy + c2,0x

2 + c0,2y
2 + · · ·

We have p(0, 0) = c0,0. One can compute

px = c1,0 + c1,1y + 2c2,0x + (· · · ),

where every term in (· · · ) has at least one x or y in it. So, px(0, 0) = c1,0. Similarly, one can compute the
other partials in terms of just the first six constants listed above:

py(0, 0) = c0,1

pxx(0, 0) = 2c2,0

pxy(0, 0) = c1,1 = pyx(0, 0)

pyy(0, 0) = 2c0,2
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Our polynomial is then

p(x, y) = f(0, 0) + fx(0, 0)x + fy(0, 0)y + fxy(0, 0)xy +
fxx(0, 0)

2
x2 +

fyy(0, 0)

2
y2.

It happens that we can write this nicely using matrices (and dropping the (0, 0) from the notation after the
partials):

p(x, y) = f(0, 0) +
(
fx fy

)(x
y

)
+

1

2

(
x y

)(fxx fxy
fyx fyy

)(
x
y

)
.

(Expand it out and check for yourself!)

• The row vector in the middle term is called the “Jacobian” and determines the behavior of f “up
to first order”. (In this particular case, the Jacobian and the “gradient” are the same thing.) The
Jacobian appears in the multivariable change of variables formula; we’ll encounter a special case of this
soon.

• The matrix in the right term is called the “Hessian” and determines the behavior of f “up to second
order”. It appears when more careful approximation than just using the Jacobian is needed.

The Hessian appears in the “Second Derivatives Test”. This is no coincidence. Suppose (0, 0) is a
critical point of f , so fx = fy = 0 at (0, 0). Since we only want to know if (0, 0) is a local max, min,
or saddle of p, we may just as well assume f(0, 0) = 0. Our polynomial is then

p(x, y) =
1

2

(
x y

)(fxx fxy
fyx fyy

)(
x
y

)
.

Applying a little linear algebra involving eigenvalues and eigenvectors to this expression gives precisely
the statement of the Second Derivatives Test.

With more careful reasoning, one can show that the behavior of p in this regard is the same as the
behavior of the function f it approximates. A careful treatment of these ideas requires an estimate of
just how well p approximates f near (0, 0). At the end of the quarter, we’ll do some estimation of this
form for functions of a single variable.

Again one can add more higher order monomials to the end of p above, so there are technically an infinite
number of solutions. �
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