A GENTLE INTRODUCTION TO COINVARIANT ALGEBRAS

JOSH SWANSON

ABSTRACT. These notes were for a lecture given in the informal post-doc seminar at the University of California, San Diego on November 12th, 2019.

Contents

1.	Symmetric polynomials	1
2.	Classical invariant theory	2
3.	Coinvariant algebras	3

1. Symmetric polynomials

Definition 1.1. The symmetric group S_n is the group of bijections on $\{1, \ldots, n\}$. The symmetric group acts on the polynomial ring $\mathbb{Q}[\mathbf{x}_n] \coloneqq \mathbb{Q}[x_1, \ldots, x_n]$ by

$$\sigma(x_i) \coloneqq x_{\sigma(i)}.$$

The S_n -invariants of $\mathbb{Q}[\mathbf{x}_n]$ are the symmetric polynomials.

Example 1.2. If we wanted to come up with many examples of symmetric polynomials, we would quickly stumble upon the idea of "symmetrizing":

$$f \mapsto \sum_{\sigma \in S_n} f.$$

For example, $x_1 \in \mathbb{Q}[\mathbf{x}_3] \mapsto 2(x_1 + x_2 + x_3)$.

Definition 1.3. Symmetrizing the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ yields (up to a scale factor) the monomial symmetric polynomial

$$m_{\alpha} \coloneqq \sum_{\sigma \in S_n} x_1^{\alpha_{\sigma(1)}} \cdots x_n^{\alpha_{\sigma(n)}}.$$

Note that m_{α} has degree $d \coloneqq \alpha_1 + \cdots + \alpha_n$. We may as well assume $\alpha_1 \ge \alpha_2 \ge \cdots \ge \alpha_n \ge 0$. Such a sequence is called an *integer partition* of d of length at most n, written $\alpha \vdash d$ with $\ell(\alpha) \le n$.

Remark 1.4. It is quite straightforward to see that $\{m_{\alpha} : \alpha \text{ is a partition of length } n\}$ is a \mathbb{Q} -basis for $\mathbb{Q}[\mathbf{x}_n]^{S_n}$.

Question 1.5. "How many" symmetric polynomials are there? "What fraction" of polynomials are symmetric?

Definition 1.6. Let $W = \bigoplus_{j=0}^{\infty} W_j$ be a graded vector space with dim $W_j < \infty$. The *Hilbert series* of W is

$$\operatorname{Hilb}(W;q) \coloneqq \sum_{j=0}^{\infty} q^j \dim W_j.$$

Date: November 12, 2019.

Example 1.7. We have

$$\operatorname{Hilb}(\mathbb{Q}[x];q) = \sum_{j=0}^{\infty} q^j = \frac{1}{1-q}$$

One may check that Hilbert series multiply over tensor products, so for instance

$$\operatorname{Hilb}(\mathbb{Q}[\mathbf{x}_n];q) = \operatorname{Hilb}(\mathbb{Q}[x_1] \otimes \cdots \otimes \mathbb{Q}[x_n];q)$$
$$= \operatorname{Hilb}(\mathbb{Q}[x_1];q) \cdots \operatorname{Hilb}(\mathbb{Q}[x_n];q)$$
$$= (1-q)^{-n}.$$

(From the binomial series, it follows that $\dim \mathbb{Q}[\mathbf{x}_n]_d = (-1)^d \binom{-n}{d} = (-1)^d \frac{(-n)(-n-1)\cdots(-n-d+1)}{d!} = \binom{n+d-1}{d}$.)

Remark 1.8. What's $\operatorname{Hilb}(\mathbb{Q}[\mathbf{x}_n]^{S_n};q)$? How many integer partitions have a fixed degree? We would need to count

$$\{\alpha_1 \ge \cdots \ge \alpha_n \ge 0 : \alpha_1 + \cdots + \alpha_n = d\},\$$

i.e. we would need to count the lattice points in a polytope. This should discourage us from expecting a completely explicit answer.

Remark 1.9. After working with partitions for any length of time, you'll stumble upon "exponential notation": $\alpha = 1^{e_1}2^{e_2}\cdots$ where e_i is the number of times *i* appears in α . For instance, $4 \ge 2 \ge 2 \ge 1$ becomes $1^12^23^04^{1}5^{0}6^{0}\cdots$. Note that $d = e_1 + 2e_2 + \cdots + ne_n$ is more complicated in exponential notation, but we've virtually removed the restrictions on the e_i 's. Inspiration strikes!

$$\begin{aligned} \operatorname{Hilb}(\mathbb{Q}[\mathbf{x}_{n}]^{S_{n}};q) &= \sum_{d \geq 0} q^{d} \sum_{\substack{\alpha \vdash d \\ \ell(\alpha) \leq n}} 1 = \sum_{e_{1},\dots,e_{n} \geq 0} q^{e_{1}+2e_{2}+\dots+ne_{n}} \\ &= \operatorname{Hilb}(\mathbb{Q}[x_{1},x_{2}^{2},x_{3}^{3},\dots,x_{n}^{n}];q) = \operatorname{Hilb}(\mathbb{Q}[x_{1}] \otimes \dots \otimes \mathbb{Q}[x_{n}^{n}];q) \\ &= \operatorname{Hilb}(\mathbb{Q}[x_{1}];q) \cdots \operatorname{Hilb}(\mathbb{Q}[x_{n}^{n}];q) = (1-q)^{-1}(1-q^{2})^{-1} \cdots (1-q^{n})^{-1}. \end{aligned}$$

(From this, we can say the *d*th coefficient is a convolution of binomial coefficients, but not much more.)

Corollary 1.10. We have

$$\frac{\text{Hilb}(\mathbb{Q}[\mathbf{x}_n];q)}{\text{Hilb}(\mathbb{Q}[\mathbf{x}_n]^{S_n};q)} = \frac{1-q^n}{1-q} \frac{1-q^{n-1}}{1-q} \cdots \frac{1-q}{1-q}$$
$$= (1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots 1 =: [n]_q!.$$

Taking $q \to 1$, we may heuristically conclude that 1/n! of polynomials in $\mathbb{Q}[\mathbf{x}_n]$ are actually symmetric.

2. Classical invariant theory

We just saw $\mathbb{Q}[\mathbf{x}_n]^{S_n}$ has the same Hilbert series as the polynomial ring $\mathbb{Q}[x_1, x_2^2, \dots, x_n^n]$. The invariants are a \mathbb{Q} -algebra. Dare we hope they're actually freely generated? Yes!

Theorem 2.1 (Fundamental theorem of symmetric polynomials). Every element of $\mathbb{Q}[\mathbf{x}_n]^{S_n}$ can be written uniquely as a polynomial in the power-sum symmetric polynomials $p_i(\mathbf{x}_n) \coloneqq \sum_{j=1}^n x_j^i$ for i = 1, ..., n.

(Most proofs rely on a variation of the idea of picking off a "leading monomial" m_{α} recursively.)

Question 2.2 ("First problem of invariant theory", late 1800's). Let $G \leq GL(V)$ be a finite group acting naturally on $S(V) \coloneqq Sym(V)$ for a finite-dimensional vector space V over a field k. If $S(V)^G$ finitely generated?

(If V has basis x_1, \ldots, x_n , we may identify S(V) with the polynomial ring $k[x_1, \ldots, x_n]$.)

Hilbert famously solved this problem in 1890 and introduced Hilbert's Basis Theorem to do it! We'll sketch the argument now.

Definition 2.3. The *Reynolds operator* on S(V) is

$$R(f) \coloneqq \frac{1}{|G|} \sum_{\sigma \in G} \sigma \cdot f.$$

Note that $R: S(V) \twoheadrightarrow S(V)^G$ is in fact an $S(V)^G$ -algebra morphism: if $f \in S(V)^G$ and $g \in S(V)$, then

$$R(fg) = \frac{1}{|G|} \sum_{\sigma \in G} \sigma \cdot fg = \frac{1}{|G|} \sum_{\sigma \in G} (\sigma \cdot f)(\sigma \cdot g) = \frac{1}{|G|} \sum_{\sigma \in G} f(\sigma \cdot g) = f \frac{1}{|G|} \sum_{\sigma \in G} \sigma \cdot g = fR(g).$$

Definition 2.4. The *coinvariant ideal* of S(V) is the ideal $S(V)^G_+$ generated by all homogeneous, non-constant *G*-invariants.

Lemma 2.5. Let $f_1, \ldots, f_r \in S(V)^G$ be non-constant and homogeneous. Then $S(V)^G = k[f_1, \ldots, f_r]$ if and only if $S(V)^G_+ = \langle f_1, \ldots, f_r \rangle$.

Proof. (\Rightarrow) If $S(V)^G = k[f_1, \ldots, f_r]$, then we may replace every generator of $S(V)^G_+$ with a polynomial combination of f_1, \ldots, f_r with non-constant coefficient, so $S(V)^G_+ = \langle f_1, \ldots, f_r \rangle$.

 $(\Leftarrow) \text{ Suppose } S(V)_{+}^{G} = \langle f_{1}, \ldots, f_{r} \rangle. \text{ Clearly } S(V)^{G} \supset k[f_{1}, \ldots, f_{r}], \text{ so we must show the reverse containment. We do so by induction on the degree <math>d$, i.e. we show $S(V)_{\leq d}^{G} = k[f_{1}, \ldots, f_{r}]_{\leq d}.$ The base case d = 0 is trivial, so take d > 0 and suppose $S(V)_{\leq d}^{G} = k[f_{1}, \ldots, f_{r}]_{\leq d}.$ Pick $f \in S(V)^{G}$ homogeneous of degree d. Since $S(V)^{G} \subset S(V)_{+}^{G} = \langle f_{1}, \ldots, f_{r} \rangle,$

 $f = f_1 s_1 + \dots + f_r s_r$

for some homogeneous elements $s_1, \ldots, s_r \in S(V)$ of degree < d. Apply the Reynolds operator to get

$$f = R(f) = f_1 R(s_1) + \dots + f_r R(s_r).$$

But $R(s_i) \in S(V)_{\leq d}^G = k[f_1, \dots, f_r]_{\leq d}$, so indeed $f \in k[f_1, \dots, f_r]!$

Example 2.6. By the Fundamental Theorem of Symmetric Polynomials and the lemma, $\mathbb{Q}[x_1, \ldots, x_n]^{S_n}_+ = \langle p_1, \ldots, p_n \rangle$.

Theorem 2.7 (Hilbert, 1890). $S(V)^G$ is finitely generated.

Proof. By Hilbert's Basis Theorem, the ideal $S(V)_+^G$ is finitely generated, and we may use a homogeneous, non-constant, *G*-invariant set of generators f_1, \ldots, f_r . By the lemma, $S(V)^G = k[f_1, \ldots, f_r]$.

3. Coinvariant Algebras

Question 3.1. Are the coinvariant ideals $S(V)^G_+$ or the corresponding quotients "interesting"?

Definition 3.2. The classical coinvariant algebra of G is $S(V)/S(V)_+^G$. This is a graded F-algebra and a graded G-module.

Example 3.3. The "original" coinvariant algebra is

$$\frac{\mathbb{Q}[x_1,\ldots,x_n]}{\langle p_1,\ldots,p_n\rangle}$$

This is finite-dimensional. In fact, $x_i^n \in \langle p_1, \ldots, p_n \rangle$! Here's a slick argument:

 $(t - x_1) \cdots (t - x_n) = t^n + (\text{lower order terms in } t \text{ whose coefficients in } \mathbb{Q}[x_1, \dots, x_n] \text{ are symmetric}).$

Now let $t = x_i$, giving $x_i^n \in \langle p_1, \ldots, p_n \rangle$. Thus dim $\mathbb{Q}[x_1, \ldots, x_n]/\langle p_1, \ldots, p_n \rangle \leq n^n$.

Remark 3.4. Emil Artin gave a clever argument in his *Galois Theory* text which, when unwound, more generally shows that $h_r(x_r, \ldots, x_n) \in \mathbb{Q}[\mathbf{x}_n]^{S_n}_+$, using the *complete homogeneous symmetric polynomials*. For our purposes, we only need to know that

 $h_r(x_r,\ldots,x_n) = x_r^r + (\text{terms of lower } x_r\text{-degree}).$

It follows that $\{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}: 0 \le a_i < i\}$ descends to a spanning set for the coinvariant algebra, giving a maximum dimension of n! with a corresponding maximum (coefficient-wise) Hilbert series of $[n]_a!$.

Remark 3.5. Indeed, for quite generic reasons concerning regular sequences, it follows from the $[n]_q!$ upper bound and our calculations concerning the "fraction" of polynomials which are symmetric polynomials that

$$\{x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}: 0 \le a_i < i\}$$

descends to a basis, called the Artin basis.

Question 3.6. When is $S(V)^G$ free?

Theorem 3.7 (Chevalley, Shephard–Todd, Serre). Suppose $\operatorname{char}(F) \nmid |G|$. Then $S(V)^G$ is a polynomial ring if and only if G is generated by pseudo-reflections, namely elements $\sigma \in \operatorname{GL}(V)$ such that $\dim \ker(\sigma - I) = \dim(V) - 1$.

Theorem 3.8 (Shephard–Todd). There is an explicit classification of such G (in characteristic 0, at least), consisting of one infinite family G(m, p, n) and 34 exceptional groups.

Theorem 3.9 (Chevalley). In this case, $S(V)/S(V)^G_+$ carries the regular representation of G and $S(V) \cong S(V)^G \otimes S(V)/S(V)^G_+$ as graded G-modules.

Remark 3.10. $\mathbb{Q}[x_1, \ldots, x_n]/\langle p_1, \ldots, p_n \rangle$ is a graded analogue of the regular representation of S_n ! Much of my research recently has been motivated by understanding aspects of the graded irreducible decomposition of this and related quotients.

Theorem 3.11 (Borel). The cohomology of the complete flag manifold $H^*(G/B, \mathbb{C})$ is isomorphic to $\mathbb{C}[x_1, \ldots, x_n]/\langle p_1, \ldots, p_n \rangle$.

Remark 3.12. The *n*! dimensions of the quotient are reflected by the *n*! *Schubert varieties* comprising the Schubert cell decomposition of the complete flag manifold. The coinvariant algebra consequently has intimate connections to both toplogy (Borel–Moore homology) and algebraic geometry (Chow rings).

Theorem 3.13 (Lascoux–Schützenberger). There is an explicitly defined set of polynomials called Schubert polynomials representing the classes of Schubert varieties in $\mathbb{C}[x_1, \ldots, x_n]/\langle p_1, \ldots, p_n \rangle$. These polynomials have the remarkable property that they are "stable" as $n \to \infty$ in a natural sense.