
A GENTLE INTRODUCTION TO COINVARIANT ALGEBRAS

JOSH SWANSON

Abstract. These notes were for a lecture given in the informal post-doc seminar at the University of
California, San Diego on November 12th, 2019.
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1. Symmetric polynomials

Definition 1.1. The symmetric group Sn is the group of bijections on {1, . . . , n}. The symmetric group acts
on the polynomial ring Q[xn] := Q[x1, . . . , xn] by

σ(xi) := xσ(i).

The Sn-invariants of Q[xn] are the symmetric polynomials.

Example 1.2. If we wanted to come up with many examples of symmetric polynomials, we would quickly
stumble upon the idea of “symmetrizing”:

f 7→
∑
σ∈Sn

f.

For example, x1 ∈ Q[x3] 7→ 2(x1 + x2 + x3).

Definition 1.3. Symmetrizing the monomial xα1
1 · · ·xαnn yields (up to a scale factor) the monomial symmetric

polynomial

mα :=
∑
σ∈Sn

x
ασ(1)
1 · · ·xασ(n)

n .

Note that mα has degree d := α1 + · · · + αn. We may as well assume α1 ≥ α2 ≥ · · · ≥ αn ≥ 0. Such a
sequence is called an integer partition of d of length at most n, written α ` d with `(α) ≤ n.

Remark 1.4. It is quite straightforward to see that {mα : α is a partition of length n} is a Q-basis for
Q[xn]Sn .

Question 1.5. “How many” symmetric polynomials are there? “What fraction” of polynomials are symmet-
ric?

Definition 1.6. Let W = ⊕∞j=0Wj be a graded vector space with dimWj <∞. The Hilbert series of W is

Hilb(W ; q) :=

∞∑
j=0

qj dimWj .
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Example 1.7. We have

Hilb(Q[x]; q) =

∞∑
j=0

qj =
1

1− q
.

One may check that Hilbert series multiply over tensor products, so for instance

Hilb(Q[xn]; q) = Hilb(Q[x1]⊗ · · · ⊗Q[xn]; q)

= Hilb(Q[x1]; q) · · ·Hilb(Q[xn]; q)

= (1− q)−n.

(From the binomial series, it follows that dimQ[xn]d = (−1)d
(−n
d

)
= (−1)d (−n)(−n−1)···(−n−d+1)

d! =
(
n+d−1

d

)
.)

Remark 1.8. What’s Hilb(Q[xn]Sn ; q)? How many integer partitions have a fixed degree? We would need
to count

{α1 ≥ · · · ≥ αn ≥ 0 : α1 + · · ·+ αn = d},
i.e. we would need to count the lattice points in a polytope. This should discourage us from expecting a
completely explicit answer.

Remark 1.9. After working with partitions for any length of time, you’ll stumble upon “exponential
notation”: α = 1e12e2 · · · where ei is the number of times i appears in α. For instance, 4 ≥ 2 ≥ 2 ≥ 1
becomes 112230415060 · · · . Note that d = e1 + 2e2 + · · ·+ nen is more complicated in exponential notation,
but we’ve virtually removed the restrictions on the ei’s. Inspiration strikes!

Hilb(Q[xn]Sn ; q) =
∑
d≥0

qd
∑
α`d

`(α)≤n

1 =
∑

e1,...,en≥0

qe1+2e2+···+nen

= Hilb(Q[x1, x
2
2, x

3
3, . . . , x

n
n]; q) = Hilb(Q[x1]⊗ · · · ⊗Q[xnn]; q)

= Hilb(Q[x1]; q) · · ·Hilb(Q[xnn]; q) = (1− q)−1(1− q2)−1 · · · (1− qn)−1.

(From this, we can say the dth coefficient is a convolution of binomial coefficients, but not much more.)

Corollary 1.10. We have

Hilb(Q[xn]; q)

Hilb(Q[xn]Sn ; q)
=

1− qn

1− q
1− qn−1

1− q
· · · 1− q

1− q
= (1 + q + · · ·+ qn−1)(1 + q + · · ·+ qn−2) · · · 1 =: [n]q!.

Taking q → 1, we may heuristically conclude that 1/n! of polynomials in Q[xn] are actually symmetric.

2. Classical invariant theory

We just saw Q[xn]Sn has the same Hilbert series as the polynomial ring Q[x1, x
2
2, . . . , x

n
n]. The invariants

are a Q-algebra. Dare we hope they’re actually freely generated? Yes!

Theorem 2.1 (Fundamental theorem of symmetric polynomials). Every element of Q[xn]Sn can be written
uniquely as a polynomial in the power-sum symmetric polynomials pi(xn) :=

∑n
j=1 x

i
j for i = 1, . . . , n.

(Most proofs rely on a variation of the idea of picking off a “leading monomial” mα recursively.)

Question 2.2 (“First problem of invariant theory”, late 1800’s). Let G ≤ GL(V ) be a finite group acting
naturally on S(V ) := Sym(V ) for a finite-dimensional vector space V over a field k. If S(V )G finitely
generated?

(If V has basis x1, . . . , xn, we may identify S(V ) with the polynomial ring k[x1, . . . , xn].)

Hilbert famously solved this problem in 1890 and introduced Hilbert’s Basis Theorem to do it! We’ll
sketch the argument now.
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Definition 2.3. The Reynolds operator on S(V ) is

R(f) :=
1

|G|
∑
σ∈G

σ · f.

Note that R : S(V ) � S(V )G is in fact an S(V )G-algebra morphism: if f ∈ S(V )G and g ∈ S(V ), then

R(fg) =
1

|G|
∑
σ∈G

σ · fg =
1

|G|
∑
σ∈G

(σ · f)(σ · g) =
1

|G|
∑
σ∈G

f(σ · g) = f
1

|G|
∑
σ∈G

σ · g = fR(g).

Definition 2.4. The coinvariant ideal of S(V ) is the ideal S(V )G+ generated by all homogeneous, non-constant
G-invariants.

Lemma 2.5. Let f1, . . . , fr ∈ S(V )G be non-constant and homogeneous. Then S(V )G = k[f1, . . . , fr] if and
only if S(V )G+ = 〈f1, . . . , fr〉.

Proof. (⇒) If S(V )G = k[f1, . . . , fr], then we may replace every generator of S(V )G+ with a polynomial

combination of f1, . . . , fr with non-constant coefficient, so S(V )G+ = 〈f1, . . . , fr〉.

(⇐) Suppose S(V )G+ = 〈f1, . . . , fr〉. Clearly S(V )G ⊃ k[f1, . . . , fr], so we must show the reverse contain-

ment. We do so by induction on the degree d, i.e. we show S(V )G≤d = k[f1, . . . , fr]≤d. The base case d = 0

is trivial, so take d > 0 and suppose S(V )G<d = k[f1, . . . , fr]<d. Pick f ∈ S(V )G homogeneous of degree d.

Since S(V )G ⊂ S(V )G+ = 〈f1, . . . , fr〉,
f = f1s1 + · · ·+ frsr

for some homogeneous elements s1, . . . , sr ∈ S(V ) of degree < d. Apply the Reynolds operator to get

f = R(f) = f1R(s1) + · · ·+ frR(sr).

But R(si) ∈ S(V )G<d = k[f1, . . . , fr]<d, so indeed f ∈ k[f1, . . . , fr]! �

Example 2.6. By the Fundamental Theorem of Symmetric Polynomials and the lemma, Q[x1, . . . , xn]Sn+ =
〈p1, . . . , pn〉.

Theorem 2.7 (Hilbert, 1890). S(V )G is finitely generated.

Proof. By Hilbert’s Basis Theorem, the ideal S(V )G+ is finitely generated, and we may use a homogeneous,

non-constant, G-invariant set of generators f1, . . . , fr. By the lemma, S(V )G = k[f1, . . . , fr]. �

3. Coinvariant algebras

Question 3.1. Are the coinvariant ideals S(V )G+ or the corresponding quotients “interesting”?

Definition 3.2. The classical coinvariant algebra of G is S(V )/S(V )G+. This is a graded F -algebra and a
graded G-module.

Example 3.3. The “original” coinvariant algebra is

Q[x1, . . . , xn]

〈p1, . . . , pn〉
.

This is finite-dimensional. In fact, xni ∈ 〈p1, . . . , pn〉! Here’s a slick argument:

(t− x1) · · · (t− xn) = tn + (lower order terms in t whose coefficients in Q[x1, . . . , xn] are symmetric).

Now let t = xi, giving xni ∈ 〈p1, . . . , pn〉. Thus dimQ[x1, . . . , xn]/〈p1, . . . , pn〉 ≤ nn.

Remark 3.4. Emil Artin gave a clever argument in his Galois Theory text which, when unwound, more
generally shows that hr(xr, . . . , xn) ∈ Q[xn]Sn+ , using the complete homogeneous symmetric polynomials. For
our purposes, we only need to know that

hr(xr, . . . , xn) = xrr + (terms of lower xr-degree).
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It follows that {xa11 x
a2
2 · · ·xann : 0 ≤ ai < i} descends to a spanning set for the coinvariant algebra, giving a

maximum dimension of n! with a corresponding maximum (coefficient-wise) Hilbert series of [n]q!.

Remark 3.5. Indeed, for quite generic reasons concerning regular sequences, it follows from the [n]q! upper
bound and our calculations concerning the “fraction” of polynomials which are symmetric polynomials that

{xa11 x
a2
2 · · ·xann : 0 ≤ ai < i}

descends to a basis, called the Artin basis.

Question 3.6. When is S(V )G free?

Theorem 3.7 (Chevalley, Shephard–Todd, Serre). Suppose char(F ) - |G|. Then S(V )G is a polynomial ring
if and only if G is generated by pseudo-reflections, namely elements σ ∈ GL(V ) such that dim ker(σ − I) =
dim(V )− 1.

Theorem 3.8 (Shephard–Todd). There is an explicit classification of such G (in characteristic 0, at least),
consisting of one infinite family G(m, p, n) and 34 exceptional groups.

Theorem 3.9 (Chevalley). In this case, S(V )/S(V )G+ carries the regular representation of G and S(V ) ∼=
S(V )G ⊗ S(V )/S(V )G+ as graded G-modules.

Remark 3.10. Q[x1, . . . , xn]/〈p1, . . . , pn〉 is a graded analogue of the regular representation of Sn! Much of
my research recently has been motivated by understanding aspects of the graded irreducible decomposition of
this and related quotients.

Theorem 3.11 (Borel). The cohomology of the complete flag manifold H∗(G/B,C) is isomorphic to
C[x1, . . . , xn]/〈p1, . . . , pn〉.

Remark 3.12. The n! dimensions of the quotient are reflected by the n! Schubert varieties comprising the
Schubert cell decomposition of the complete flag manifold. The coinvariant algebra consequently has intimate
connections to both toplogy (Borel–Moore homology) and algebraic geometry (Chow rings).

Theorem 3.13 (Lascoux–Schützenberger). There is an explicitly defined set of polynomials called Schubert
polynomials representing the classes of Schubert varieties in C[x1, . . . , xn]/〈p1, . . . , pn〉. These polynomials
have the remarkable property that they are “stable” as n→∞ in a natural sense.


