Asymptotics of Mahonian statistics Southern California Discrete Math Symposium, May 4th, 2019

Joshua P. Swanson University of California, San Diego

Based partly on joint work with Sara Billey and Matjaž Konvalinka

arXiv: 1902.06724

Slides: http://www.math.ucsd.edu/~jswanson/talks/2019_SCDMS.pdf

Definition The *symmetric group* is

$$S_n \coloneqq \{ \text{bijections } \pi \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \}.$$

The elements are *permutations*.

Definition The *symmetric group* is

$$S_n := \{ \text{bijections } \pi \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \}.$$

The elements are *permutations*.

Definition The *inversion number* of $\pi \in S_n$ is

$$\mathsf{inv}(\pi) \coloneqq \#\{(i,j) : 1 \le i < j \le n, \pi(i) > \pi(j)\}.$$

Definition The *symmetric group* is

$$S_n := \{ \text{bijections } \pi \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \}.$$

The elements are *permutations*.

Definition

The *inversion number* of $\pi \in S_n$ is

$$\operatorname{inv}(\pi) := \#\{(i,j) : 1 \le i < j \le n, \pi(i) > \pi(j)\}.$$

For example,

$$inv(35142) = \#\{(1,3), (1,5), (2,3), (2,4), (2,5), (4,5)\} = 6.$$

Definition The *symmetric group* is

$$S_n := \{ \text{bijections } \pi \colon \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \}.$$

The elements are *permutations*.

Definition

The *inversion number* of $\pi \in S_n$ is

$$\operatorname{inv}(\pi) \coloneqq \#\{(i,j) : 1 \le i < j \le n, \pi(i) > \pi(j)\}.$$

For example,

$$inv(35142) = \#\{(1,3), (1,5), (2,3), (2,4), (2,5), (4,5)\} = 6.$$

Zeilberger: this is the "most important permutation statistic".

Inversion number bijection

Lemma (Classical)

The map

$$\Phi: S_n \to \{\alpha \in \mathbb{Z}_{\geq 0}^n : (\alpha_1, \dots, \alpha_n) \le (n-1, n-2, \dots, 1, 0)\}$$

$$\alpha_i \coloneqq \#\{j : i < j \le n, \pi(i) > \pi(j)\}$$

is a bijection.

Inversion number bijection

Lemma (Classical)

The map

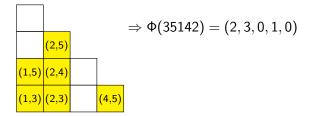
$$\Phi: S_n \to \{\alpha \in \mathbb{Z}_{\geq 0}^n : (\alpha_1, \ldots, \alpha_n) \le (n-1, n-2, \ldots, 1, 0)\}$$

$$\alpha_i := \#\{j : i < j \le n, \pi(i) > \pi(j)\}$$

is a **bijection**.

For example:

$$\mathsf{inv}(35142) = \#\{(1,3), (1,5), (2,3), (2,4), (2,5), (4,5)\} = 6$$



Clearly
$$inv(\pi) = \alpha_1 + \cdots + \alpha_n$$
. Hence:
Corollary

• inv on S_n is symmetrically distributed with mean $((n-1)+(n-2)+\cdots+0)/2 = \frac{1}{2} \binom{n}{2}$.

Clearly inv
$$(\pi) = \alpha_1 + \cdots + \alpha_n$$
. Hence:
Corollary

- ▶ inv on S_n is symmetrically distributed with mean $((n-1)+(n-2)+\cdots+0)/2 = \frac{1}{2} \binom{n}{2}.$
- The ordinary generating function of inv on S_n is

$$\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \prod_{i=1}^n \sum_{\alpha_i=0}^{n-i} q^{\alpha_i}$$

= $(1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots(1)$
=: $[n]_q!$

Clearly inv
$$(\pi) = \alpha_1 + \cdots + \alpha_n$$
. Hence:
Corollary

- ▶ inv on S_n is symmetrically distributed with mean $((n-1)+(n-2)+\cdots+0)/2 = \frac{1}{2} \binom{n}{2}.$
- The ordinary generating function of inv on S_n is

$$\sum_{\pi \in S_n} q^{\mathsf{inv}(\pi)} = \prod_{i=1}^n \sum_{\alpha_i=0}^{n-i} q^{\alpha_i}$$

= $(1+q+\cdots+q^{n-1})(1+q+\cdots+q^{n-2})\cdots(1)$
=: $[n]_q!$

► $\mathcal{X}_{inv} \sim \mathcal{U}_{n-1} + \cdots + \mathcal{U}_1$ is the sum of independent discrete uniform random variables.

Theorem (Feller '45; implicit earlier) As $n \to \infty$, \mathcal{X}_{inv} is asymptotically normal.

Theorem (Feller '45; implicit earlier) As $n \to \infty$, \mathcal{X}_{inv} is asymptotically normal. That is, for all $u \in \mathbb{R}$,

$$\lim_{n\to\infty} \mathbb{P}[\mathcal{X}_{\rm inv}^* \le u] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^u e^{-x^2/2} \, dx$$

where

$$\mathcal{X}^*_{\mathsf{inv}} \coloneqq \frac{\mathcal{X}_{\mathsf{inv}} - \mu_n}{\sigma_n}$$

with

$$\mu_n = \frac{n(n-1)}{4}, \qquad \sigma_n^2 = \frac{2n^3 + 3n^2 - 5n}{72}$$

٠

Inversion number application

Theorem (Feller '45; implicit earlier)

As $n \to \infty$, \mathcal{X}_{inv} is asymptotically normal.

Example (Kendall's τ test)

Say some process generated distinct real numbers x_1, x_2, \ldots, x_n , one per day. You want to know if the process is **independent of time**. Turn the data into a permutation π while preserving the relative order of data points and compute $inv(\pi)$. Since $\mathcal{X}_{inv} \approx \mathcal{N}(\mu_n, \sigma_n)$, independent data would have

$$|(\operatorname{inv}(\pi) - \mu_n)/\sigma_n| \leq 3$$

 \approx 99.7% of the time. So, **if this** *z*-score is too big, say larger than 3, the process is very likely time-dependent.

Definition (MacMahon, early 1900's) The *descent set* of $\pi \in S_n$ is

$$\mathsf{Des}(\pi) \coloneqq \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\}.$$

Definition (MacMahon, early 1900's) The *descent set* of $\pi \in S_n$ is

$$\mathsf{Des}(\pi) \coloneqq \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\}.$$

The major index is

$$\mathsf{maj}(\pi) \coloneqq \sum_{i \in \mathsf{Des}(\pi)} i.$$

Definition (MacMahon, early 1900's) The *descent set* of $\pi \in S_n$ is

$$\mathsf{Des}(\pi) \coloneqq \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\}.$$

The major index is

$$\mathsf{maj}(\pi) \coloneqq \sum_{i \in \mathsf{Des}(\pi)} i.$$

For example,

$${\sf maj}(25143) = {\sf maj}(25.14.3) = 2+4 = 6.$$

Definition (MacMahon, early 1900's) The *descent set* of $\pi \in S_n$ is

$$\mathsf{Des}(\pi) \coloneqq \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\}.$$

The major index is

$$\mathsf{maj}(\pi) \coloneqq \sum_{i \in \mathsf{Des}(\pi)} i.$$

For example,

$$maj(25143) = maj(25.14.3) = 2 + 4 = 6.$$

Zeilberger: this is the "second most important permutation statistic".

Lemma (Gupta, '78)

For a given $\pi \in S_{n-1}$, let $C_{\pi} \subset S_n$ be the *n* permutations obtained by inserting *n* into π in all possible ways. Then

$${maj(\pi') - maj(\pi) : \pi' \in C_{\pi}} = {0, 1, \dots, n-1}.$$

Lemma (Gupta, '78)

For a given $\pi \in S_{n-1}$, let $C_{\pi} \subset S_n$ be the *n* permutations obtained by inserting *n* into π in all possible ways. Then

$$\{ \operatorname{\mathsf{maj}}(\pi') - \operatorname{\mathsf{maj}}(\pi) : \pi' \in C_\pi \} = \{ 0, 1, \dots, n-1 \}.$$

Corollary

There is a bijection

$$\Psi: \{\alpha \in \mathbb{Z}_{\geq 0}^n : (\alpha_1, \ldots, \alpha_n) \leq (n-1, n-2, \ldots, 1, 0)\} \to S_n$$

for which $maj(\Psi(\alpha)) = \alpha_1 + \cdots + \alpha_n$.

Lemma (Gupta, '78)

For a given $\pi \in S_{n-1}$, let $C_{\pi} \subset S_n$ be the *n* permutations obtained by inserting *n* into π in all possible ways. Then

$$\{ \mathsf{maj}(\pi') - \mathsf{maj}(\pi) : \pi' \in C_{\pi} \} = \{ 0, 1, \dots, n-1 \}.$$

Corollary

There is a bijection

$$\Psi \colon \{\alpha \in \mathbb{Z}_{\geq 0}^n : (\alpha_1, \ldots, \alpha_n) \leq (n-1, n-2, \ldots, 1, 0)\} \to S_n$$

for which $maj(\Psi(\alpha)) = \alpha_1 + \cdots + \alpha_n$.

Corollary

The bijection $\Psi \circ \Phi \colon S_n \to S_n$ sends inv to maj.

Lemma (Gupta, '78)

For a given $\pi \in S_{n-1}$, let $C_{\pi} \subset S_n$ be the *n* permutations obtained by inserting *n* into π in all possible ways. Then

$$\{ \operatorname{\mathsf{maj}}(\pi') - \operatorname{\mathsf{maj}}(\pi) : \pi' \in C_\pi \} = \{ 0, 1, \dots, n-1 \}.$$

Corollary

There is a bijection

$$\Psi \colon \{\alpha \in \mathbb{Z}_{\geq 0}^n : (\alpha_1, \ldots, \alpha_n) \leq (n-1, n-2, \ldots, 1, 0)\} \to S_n$$

for which $maj(\Psi(\alpha)) = \alpha_1 + \cdots + \alpha_n$.

Corollary

The bijection $\Psi \circ \Phi \colon S_n \to S_n$ sends inv to maj. Hence $\mathcal{X}_{inv} \sim \mathcal{X}_{maj}$ and \mathcal{X}_{maj} is asymptotically normal as $n \to \infty$.

Example Use $\alpha = (2, 3, 0, 1, 0)$. Then:

	maj	∆ maj
1	0	0
2.1	1	1

Example

Use $\alpha = (2, 3, 0, 1, 0)$. Then:

	maj	Δmaj
1	0	0
2.1	1	1
2.13	1	0

Example

Use $\alpha = (2, 3, 0, 1, 0)$. Then:

_	maj	Δmaj
1	0	0
2.1	1	1
2.13	1	0
2.14.3	4	3

Example

Use $\alpha = (2, 3, 0, 1, 0)$. Then:

	maj	Δ maj
1	0	0
2.1	1	1
2.13	1	0
2.14.3	4	3
25.14.3	6	2

Hence $\Psi((2,3,0,1,0)) = 25143$.

Example

Use $\alpha = (2, 3, 0, 1, 0)$. Then:

	maj	Δmaj
1	0	0
2.1	1	1
2.13	1	0
2.14.3	4	3
25.14.3	6	2

Hence $\Psi((2,3,0,1,0)) = 25143$. Since $\Phi(35142) = (2,3,0,1,0)$, we have

$$(\Psi \circ \Phi)(35142) = 25143$$

inv(35142) = 6 = maj(25143).

Question (Svante Janson)

What is the **joint** distribution of inv and maj on S_n ?

Question (Svante Janson)

What is the **joint** distribution of inv and maj on S_n ? In particular, what is the **asymptotic correlation** as $n \to \infty$?

Question (Svante Janson)

What is the **joint** distribution of inv and maj on S_n ? In particular, what is the **asymptotic correlation** as $n \to \infty$?

Theorem (Baxter-Zeilberger)

inv and maj on S_n are jointly independently asymptotically normally distributed as $n \to \infty$.

Question (Svante Janson)

What is the **joint** distribution of inv and maj on S_n ? In particular, what is the **asymptotic correlation** as $n \to \infty$?

Theorem (Baxter–Zeilberger)

inv and maj on S_n are jointly independently asymptotically normally distributed as $n \to \infty$. That is, for all $u, v \in \mathbb{R}$,

$$\lim_{n\to\infty} \mathbb{P}[\mathcal{X}^*_{\mathsf{inv}} \le u, \mathcal{X}^*_{\mathsf{maj}} \le v] = \frac{1}{2\pi} \int_{-\infty}^u \int_{-\infty}^v e^{-x^2/2} e^{-y^2/2} \, dy \, dx$$

where $\mathcal{X}^* := (\mathcal{X} - \mu_n) / \sigma_n$ with μ_n, σ_n from Feller's theorem.

The Baxter-Zeilberger proof can be summarized as follows:

1. The method of moments says it suffices to show that for each fixed $(s, t) \in \mathbb{Z}_{\geq 0}^2$, the (s, t)-mixed moment $\mathbb{E}[(\mathcal{X}_{inv}^*)^s (\mathcal{X}_{maj}^*)^t]$ tend to the (s, t)-mixed moment of $\mathcal{N}(0, 1) \times \mathcal{N}(0, 1)$ as $n \to \infty$.

The Baxter–Zeilberger proof can be summarized as follows:

- 1. The method of moments says it suffices to show that for each fixed $(s, t) \in \mathbb{Z}_{\geq 0}^2$, the (s, t)-mixed moment $\mathbb{E}[(\mathcal{X}_{inv}^*)^s (\mathcal{X}_{maj}^*)^t]$ tend to the (s, t)-mixed moment of $\mathcal{N}(0, 1) \times \mathcal{N}(0, 1)$ as $n \to \infty$.
- 2. Let $F_{n,i}(p,q) \coloneqq \sum_{\substack{\pi \in S_n \\ \pi_n = i}} p^{inv(\pi)} q^{maj(\pi)}$. Derive a recurrence for $F_{n,i}(p,q)$ by considering the effect of removing the last letter.

The Baxter–Zeilberger proof can be summarized as follows:

- 1. The method of moments says it suffices to show that for each fixed $(s, t) \in \mathbb{Z}_{\geq 0}^2$, the (s, t)-mixed moment $\mathbb{E}[(\mathcal{X}_{inv}^*)^s (\mathcal{X}_{maj}^*)^t]$ tend to the (s, t)-mixed moment of $\mathcal{N}(0, 1) \times \mathcal{N}(0, 1)$ as $n \to \infty$.
- 2. Let $F_{n,i}(p,q) \coloneqq \sum_{\substack{\pi \in S_n \\ \pi_n = i}} p^{\text{inv}(\pi)} q^{\text{maj}(\pi)}$. Derive a recurrence for $F_{n,i}(p,q)$ by considering the effect of removing the last letter.
- Use the recurrence and Taylor expansion to derive a recurrence for the mixed factorial moments E[(𝑋^{*}_{inv})^(s)(𝑋^{*}_{maj})^(t)].

The Baxter-Zeilberger proof can be summarized as follows:

- 1. The method of moments says it suffices to show that for each fixed $(s, t) \in \mathbb{Z}_{\geq 0}^2$, the (s, t)-mixed moment $\mathbb{E}[(\mathcal{X}_{inv}^*)^s (\mathcal{X}_{maj}^*)^t]$ tend to the (s, t)-mixed moment of $\mathcal{N}(0, 1) \times \mathcal{N}(0, 1)$ as $n \to \infty$.
- 2. Let $F_{n,i}(p,q) \coloneqq \sum_{\substack{\pi \in S_n \\ \pi_n = i}} p^{inv(\pi)} q^{maj(\pi)}$. Derive a recurrence for $F_{n,i}(p,q)$ by considering the effect of removing the last letter.
- Use the recurrence and Taylor expansion to derive a recurrence for the mixed factorial moments E[(X^{*}_{inv})^(s)(X^{*}_{mai})^(t)].
- 4. Verify the leading terms of the mixed factorial moments agree with the moments of $\mathcal{N}(0,1) \times \mathcal{N}(0,1)$.

The Baxter-Zeilberger proof can be summarized as follows:

- 1. The method of moments says it suffices to show that for each fixed $(s, t) \in \mathbb{Z}_{\geq 0}^2$, the (s, t)-mixed moment $\mathbb{E}[(\mathcal{X}_{inv}^*)^s (\mathcal{X}_{maj}^*)^t]$ tend to the (s, t)-mixed moment of $\mathcal{N}(0, 1) \times \mathcal{N}(0, 1)$ as $n \to \infty$.
- 2. Let $F_{n,i}(p,q) \coloneqq \sum_{\substack{\pi \in S_n \\ \pi_n = i}} p^{inv(\pi)} q^{maj(\pi)}$. Derive a recurrence for $F_{n,i}(p,q)$ by considering the effect of removing the last letter.
- 3. Use the recurrence and Taylor expansion to derive a recurrence for the mixed factorial moments $\mathbb{E}[(\mathcal{X}_{inv}^*)^{(s)}(\mathcal{X}_{mai}^*)^{(t)}]$.
- 4. Verify the leading terms of the mixed factorial moments agree with the moments of $\mathcal{N}(0,1) \times \mathcal{N}(0,1)$.

The details are involved and are perhaps best handled by a computer, which can easily compute all the relevant quantities using the recursions. The approach gives me no intuition for *why* the result should be true.

The \$300 question

"Referee Dan Romik believe[s] that we should mention, at this point, the 'explicit' formula of Roselle (mentioned by Knuth) in terms of a certain infinite double product for the q-exponential generating function of $\sum_{\pi \in S_n} p^{\text{inv}(\pi)} q^{\text{maj}(\pi)}$. Romik believes that this may lead to an alternative proof, that would even imply a stronger result (a local limit law). We strongly doubt this, and [Doron Zeilberger] is hereby offering \$300 for the first person to supply such a proof, whose length should not exceed the length of this article [13 pages]." (***)

Roselle's formula

Definition Let $H_n(p,q) \coloneqq \sum_{\pi \in S_n} p^{inv(\pi)} q^{maj(\pi)}$.

Roselle's formula

Definition Let $H_n(p,q) := \sum_{\pi \in S_n} p^{inv(\pi)} q^{maj(\pi)}$. Theorem (Roselle) We have $\sum_{n=1}^{\infty} H_n(p,q) z^n$

$$\sum_{n \ge 0} \frac{H_n(p,q)z^n}{(p)_n(q)_n} = \prod_{a,b \ge 0} \frac{1}{1 - p^a q^b z}$$

where $(p)_n := (1-p)(1-p^2)\cdots(1-p^n).$

A correction factor

If inv and maj on S_n were independent, we would have

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2}.$$

In this case, joint asymptotic normality would follow trivially from individual asymptotic normality.

A correction factor

If inv and maj on S_n were independent, we would have

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2}.$$

In this case, joint asymptotic normality would follow trivially from individual asymptotic normality. Roselle's formula can be reinterpreted as saying

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2} F_n(p,q)$$

where

$$F_n(p,q) = \frac{n! \cdot \text{g.f. of size-} n \text{ multisets from } \mathbb{Z}_{\geq 0}^2}{\text{g.f. of size-} n \text{ lists from } \mathbb{Z}_{\geq 0}^2}.$$

A correction factor

If inv and maj on S_n were independent, we would have

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2}.$$

In this case, joint asymptotic normality would follow trivially from individual asymptotic normality. Roselle's formula can be reinterpreted as saying

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2} F_n(p,q)$$

where

$$F_n(p,q) = \frac{n! \cdot \text{g.f. of size-} n \text{ multisets from } \mathbb{Z}_{\geq 0}^2}{\text{g.f. of size-} n \text{ lists from } \mathbb{Z}_{\geq 0}^2}$$

Intuitively, F_n is "1 to first order". This explains "why" Baxter–Zeilberger's result holds and suggests an alternate proof.

Theorem (S.)

There are constants $c_{\mu} \in \mathbb{Z}$ indexed by integer partitions μ such that

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p! [n]_q!}{n!^2} F_n(p,q)$$

where

Theorem (S.)

There are constants $c_{\mu} \in \mathbb{Z}$ indexed by integer partitions μ such that

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2} F_n(p,q)$$

where

$$F_n(p,q) = \sum_{d=0}^n [(1-p)(1-q)]^d \sum_{\substack{\mu \vdash n \ \ell(\mu) = n-d}} \frac{c_\mu}{\prod_i [\mu_i]_p [\mu_i]_q}.$$

Theorem (S.)

There are constants $c_{\mu} \in \mathbb{Z}$ indexed by integer partitions μ such that

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2} F_n(p,q)$$

where

$$F_n(p,q) = \sum_{d=0}^n [(1-p)(1-q)]^d \sum_{\substack{\mu \vdash n \ \ell(\mu) = n-d}} \frac{c_\mu}{\prod_i [\mu_i]_p [\mu_i]_q}.$$

Explicitly,

$$\boldsymbol{c}_{\mu} = \sum_{\lambda \vdash n} \lambda! \sum_{\substack{\Lambda: \Pi(\lambda) \leq \Lambda \\ \mathsf{type}(\Lambda) = \mu}} \mu(\Pi(\lambda), \Lambda).$$

Theorem (S.)

There are constants $c_{\mu} \in \mathbb{Z}$ indexed by integer partitions μ such that

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2} F_n(p,q)$$

where

$$F_n(p,q) = \sum_{d=0}^n [(1-p)(1-q)]^d \sum_{\substack{\mu \vdash n \ \ell(\mu) = n-d}} \frac{c_\mu}{\prod_i [\mu_i]_p [\mu_i]_q}.$$

Explicitly,

$$\mathbf{c}_{\mu} = \sum_{\lambda \vdash n} \lambda! \sum_{\substack{\Lambda: \Pi(\lambda) \leq \Lambda \\ \mathsf{type}(\Lambda) = \mu}} \mu(\Pi(\lambda), \Lambda).$$

The d = 0 contribution is 1. Hence, $H_n(1, q) = [n]_q!$.

Theorem (S.)

Uniformly on compact subsets of \mathbb{R}^2 , we have

$${\sf F}_{\sf n}(e^{is/\sigma_{\sf n}},e^{it/\sigma_{\sf n}}) o 1$$
 as ${\sf n} o\infty$

Theorem (S.)

Uniformly on compact subsets of \mathbb{R}^2 , we have

$${\sf F}_{\sf n}(e^{is/\sigma_n},e^{it/\sigma_n}) o 1 \qquad {\sf as}\qquad {\sf n} o\infty$$

The argument uses the explicit form of c_{μ} , the explicit form of the Möbius function on the lattice of set partitions, and some estimates to bound the d > 0 contributions to F_n .

Technical details: easy manipulations give, for $|s|, |t| \leq M$ and n large,

$$|F_n(e^{is/\sigma_n}, e^{it/\sigma_n}) - 1| \le \sum_{d=1}^n \frac{|st|^d}{\sigma_n^{2d}} \sum_{\lambda \vdash n} \lambda! \sum_{\substack{\Lambda: \Pi(\lambda) \le \Lambda \\ \#\Lambda = n-d}} |\mu(\Pi(\lambda), \Lambda)|.$$

Lemma

Suppose $\lambda \vdash n$ with $\ell(\lambda) = n - k$, and fix d. Then

$$\sum_{\substack{\Lambda:\Pi(\lambda)\leq\Lambda\\\#\Lambda=n-d}}\mu(\Pi(\lambda),\Lambda)=(-1)^{d-k}\sum_{\substack{\Lambda\in P[n-k]\\\#\Lambda=n-d}}\prod_{A\in\Lambda}(\#A-1)!$$

and the terms on the left all have the same sign $(-1)^{d-k}$. The sums are empty unless $n \ge d \ge k \ge 0$.

Lemma
Let
$$\lambda \vdash n$$
 with $\ell(\lambda) = n - k$ and $n \ge d \ge k \ge 0$. Then
$$\sum_{\substack{\Lambda:\Pi(\lambda) \le \Lambda \\ \#\Lambda = n - d}} |\mu(\Pi(\lambda), \Lambda)| \le (n - k)^{2(d-k)}.$$

Lemma

For $n \ge d \ge k \ge 0$, we have

$$\sum_{\substack{\lambda \vdash n \\ \ell(\lambda) = n-k}} \lambda! \sum_{\substack{\Lambda: \Pi(\lambda) \leq \Lambda \\ \#\Lambda = n-d}} |\mu(\Pi(\lambda), \Lambda)| \leq (n-k)^{2d-k} (k+1)!.$$

Lemma

For n sufficiently large, for all $0 \le d \le n$ we have

$$\sum_{\lambda \vdash n} \lambda! \sum_{\substack{\Lambda: \Pi(\lambda) \leq \Lambda \\ \#\Lambda = n-d}} |\mu(\Pi(\lambda), \Lambda)| \leq 3n^{2d}.$$

Putting it all together:

$$egin{aligned} &F_n(e^{is/\sigma_n},e^{it/\sigma_n})-1| \leq 3\sum_{d=1}^nrac{(Mn)^{2d}}{\sigma_n^{2d}}\ &(Mn)^{2d}/\sigma_n^{2d}\sim (36^2M^2/n)^d\ &\lim_{n o\infty}\sum_{d=1}^nrac{(Mn)^{2d}}{\sigma_n^{2d}}=0. \end{aligned}$$

Definition The *characteristic function* of a real-valued random variable \mathcal{X} is

 $\phi_{\mathcal{X}} \colon \mathbb{R} \to \mathbb{C}$ $\phi_{\mathcal{X}}(t) \coloneqq \mathbb{E}[e^{iXt}].$

Definition The *characteristic function* of a real-valued random variable \mathcal{X} is

 $\phi_{\mathcal{X}} \colon \mathbb{R} \to \mathbb{C}$ $\phi_{\mathcal{X}}(t) \coloneqq \mathbb{E}[e^{iXt}].$

If \mathcal{X} has a density function, $\phi_{\mathcal{X}}$ is its Fourier transform.

Definition The *characteristic function* of a real-valued random variable \mathcal{X} is

 $\phi_{\mathcal{X}} \colon \mathbb{R} \to \mathbb{C}$ $\phi_{\mathcal{X}}(t) \coloneqq \mathbb{E}[e^{iXt}].$

If \mathcal{X} has a density function, $\phi_{\mathcal{X}}$ is its Fourier transform. Theorem (*Lévy Continuity*)

 $\mathcal{X}_1, \mathcal{X}_2, \ldots$ converges in distribution to \mathcal{X} if and only if for all $t \in \mathbb{R}$,

$$\lim_{n\to\infty}\phi_{\mathcal{X}_n}(t)=\phi_{\mathcal{X}}(t).$$

Definition The *characteristic function* of a real-valued random variable \mathcal{X} is

 $\phi_{\mathcal{X}} \colon \mathbb{R} \to \mathbb{C}$ $\phi_{\mathcal{X}}(t) \coloneqq \mathbb{E}[e^{iXt}].$

If \mathcal{X} has a density function, $\phi_{\mathcal{X}}$ is its Fourier transform. Theorem (*Lévy Continuity*)

 $\mathcal{X}_1, \mathcal{X}_2, \ldots$ converges in distribution to \mathcal{X} if and only if for all $t \in \mathbb{R}$,

$$\lim_{n\to\infty}\phi_{\mathcal{X}_n}(t)=\phi_{\mathcal{X}}(t).$$

A similar result holds for \mathbb{R}^k -valued random variables.

The equation

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p![n]_q!}{n!^2} F_n(p,q)$$

can be reinterpreted as

$$\phi_{(\mathcal{X}_{inv}^*,\mathcal{X}_{maj}^*)}(s,t) = \phi_{\mathcal{X}_{inv}^*}(s)\phi_{\mathcal{X}_{maj}^*}(t)F_n(e^{is/\sigma_n},e^{it/\sigma_n}).$$

The equation

$$\frac{H_n(p,q)}{n!} = \frac{[n]_p! [n]_q!}{n!^2} F_n(p,q)$$

can be reinterpreted as

$$\phi_{(\mathcal{X}_{inv}^*,\mathcal{X}_{maj}^*)}(s,t) = \phi_{\mathcal{X}_{inv}^*}(s)\phi_{\mathcal{X}_{maj}^*}(t)F_n(e^{is/\sigma_n},e^{it/\sigma_n}).$$

For fixed s, t, using the theorem above and Feller's result gives

$$\lim_{n\to\infty}\phi_{(\mathcal{X}_{\rm inv}^*,\mathcal{X}_{\rm maj}^*)}(s,t) = e^{-s^2/2}e^{-t^2/2} = \phi_{(\mathcal{N}(0,1),\mathcal{N}(0,1))}(s,t).$$

This completes the proof of the Baxter–Zeilberger theorem using Roselle's formula.

Done!

Zeilberger has accepted the new argument (8 pages) as fulfilling the conditions of the prize!

Done!

Zeilberger has accepted the new argument (8 pages) as fulfilling the conditions of the prize!

DORON ZEILBERGER 3141
THREE HUNDRED + XX/100 - Dollars @ March
Bankof America Mar D. Jeiller .
BLAD DIRECTO

Local limit theorem?

Romik's question was largely motivated by a desire to find a *local limit theorem*. Here, this would be a statement of the form

$$\mathbb{P}[\mathsf{inv} = u, \mathsf{maj} = v] = \frac{1}{2\pi\sigma_n} e^{-(u-\mu_n)^2/\sigma_n - (v-\mu_n)^2/\sigma_n} + O(f(n))$$

with an explicit error bound f(n) where $\lim_{n\to\infty} f(n) = 0$.

Local limit theorem?

Romik's question was largely motivated by a desire to find a *local limit theorem*. Here, this would be a statement of the form

$$\mathbb{P}[\mathsf{inv} = u, \mathsf{maj} = v] = \frac{1}{2\pi\sigma_n} e^{-(u-\mu_n)^2/\sigma_n - (v-\mu_n)^2/\sigma_n} + O(f(n))$$

with an explicit error bound f(n) where $\lim_{n\to\infty} f(n) = 0$.

The method of moments has no hope of proving such a result. A standard approach to local limit theorems is to use the Cauchy integral formula on the generating function, though such arguments are typically lengthy and technical. A local limit theorem in this context will be the subject of a future article.

Variations

Question

There are many generalizations and variations of Mahonian statistics. What can be said of their distributions?

Variations

Question

There are many generalizations and variations of Mahonian statistics. What can be said of their distributions?

Question

What are the **possible normalized limit laws** for maj on **tableaux**?

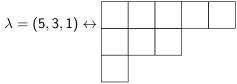
Partitions

Definition A partition λ of *n* is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \cdots$ such that $\sum_i \lambda_i = n$.

Partitions

Definition

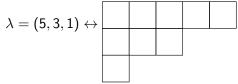
A partition λ of *n* is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their *Ferrers* diagram



Partitions

Definition

A partition λ of *n* is a sequence of positive integers $\lambda_1 \ge \lambda_2 \ge \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their *Ferrers diagram*



Theorem

(Young, early 1900's) The complex inequivalent irreducible representations S^{λ} of S_n are canonically indexed by partitions of n.

Definition

A standard Young tableau (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with 1, 2, ..., n which increases along rows and decreases down columns.

$$T = \boxed{\begin{array}{c|ccccc} 1 & 3 & 6 & 7 & 9 \\ \hline 2 & 5 & 8 \\ \hline 4 \\ \end{array}} \in \operatorname{SYT}(\lambda)$$

Definition

A standard Young tableau (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with 1, 2, ..., n which increases along rows and decreases down columns.

$$T = \boxed{\begin{array}{c|ccccc} 1 & 3 & 6 & 7 & 9 \\ \hline 2 & 5 & 8 \\ \hline 4 & & \\ \end{array}} \in \operatorname{SYT}(\lambda)$$

Descent set: $\{1, 3, 7\}$.

Definition

The *descent set* of $T \in SYT(\lambda)$ is the set

 $\mathsf{Des}(T) \coloneqq \{1 \le i < n : i+1 \text{ is in a lower row of } T \text{ than } i\}.$

Definition

A standard Young tableau (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with 1, 2, ..., n which increases along rows and decreases down columns.

$$T = \boxed{\begin{array}{c|ccccc} 1 & 3 & 6 & 7 & 9 \\ \hline 2 & 5 & 8 \\ \hline 4 & & \\ \end{array}} \in \operatorname{SYT}(\lambda)$$

Descent set: $\{1, 3, 7\}$. Major index: 1 + 3 + 7 = 11.

Definition

The *descent set* of $T \in SYT(\lambda)$ is the set

 $\mathsf{Des}(T) \coloneqq \{1 \le i < n : i+1 \text{ is in a lower row of } T \text{ than } i\}.$

The major index of $T \in SYT(\lambda)$ is maj $(T) := \sum_{i \in Des(T)} i$.

For
$$\lambda = (5, 3, 1)$$
,

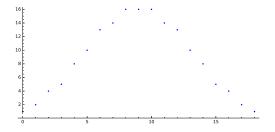
$$\sum_{T \in SYT(\lambda)} q^{maj(T)} = q^5(q^{18} + 2q^{17} + 4q^{16} + 5q^{15} + 8q^{14} + 10q^{13} + 13q^{12} + 14q^{11} + 16q^{10} + 16q^9 + 16q^8 + 14q^7 + 13q^6 + 10q^5 + 8q^4 + 5q^3 + 4q^2 + 2q + 1).$$

For
$$\lambda = (5, 3, 1)$$
,

$$\sum_{T \in SYT(\lambda)} q^{maj(T)} = q^5(q^{18} + 2q^{17} + 4q^{16} + 5q^{15} + 8q^{14} + 10q^{13} + 13q^{12} + 14q^{11} + 16q^{10} + 16q^9 + 16q^8 + 14q^7 + 13q^6 + 10q^5 + 8q^4 + 5q^3 + 4q^2 + 2q + 1).$$

The coefficients of $q^{-5}f^{(5,3,1)}(q)$:

(1,2,4,5,8,10,13,14,16,16,16,14,13,10,8,5,4,2,1)



maj on SYT(λ) limit law classification

Definition Let $aft(\lambda) := |\lambda| - max\{\lambda_1, \lambda_1'\}$ and let

$$\mathcal{IH}_{M} \coloneqq \mathcal{U}[0,1] + \cdots + \mathcal{U}[0,1]$$

be the Mth Irwin-Hall distribution.

maj on SYT(λ) limit law classification

Definition Let $aft(\lambda) := |\lambda| - max\{\lambda_1, \lambda'_1\}$ and let

 $\mathcal{IH}_{M} \coloneqq \mathcal{U}[0,1] + \dots + \mathcal{U}[0,1]$

be the Mth Irwin-Hall distribution.

Theorem (Billey–Konvalinka–S. '19) Let $\lambda^{(1)}, \lambda^{(2)}, \ldots$ be a sequence of partitions. Let \mathcal{X}_n denote the major index statistic on standard tableaux of shape $\lambda^{(n)}$ sampled uniformly, and let $\mathcal{X}_n^* := (\mathcal{X}_n - \mu_n)/\sigma_n$. maj on SYT(λ) limit law classification

Definition Let $aft(\lambda) := |\lambda| - max\{\lambda_1, \lambda_1'\}$ and let

$$\mathcal{IH}_{M} \coloneqq \mathcal{U}[0,1] + \cdots + \mathcal{U}[0,1]$$

be the Mth Irwin-Hall distribution.

Theorem (Billey–Konvalinka–S. '19) Let $\lambda^{(1)}, \lambda^{(2)}, \ldots$ be a sequence of partitions. Let \mathcal{X}_n denote the major index statistic on standard tableaux of shape $\lambda^{(n)}$ sampled uniformly, and let $\mathcal{X}_n^* := (\mathcal{X}_n - \mu_n)/\sigma_n$. Then \mathcal{X}_n^* converges in distribution **if and only if**

(i)
$$\operatorname{aft}(\lambda^{(n)}) \to \infty$$
; or
(ii) $|\lambda^{(n)}| \to \infty$ and $\operatorname{aft}(\lambda^{(n)}) \to M < \infty$; or
(iii) the distribution of $\mathcal{X}^*_{\lambda^{(n)}}[\operatorname{maj}]$ is eventually constant.
The limit law is $\mathcal{N}(0, 1)$ in case (i), \mathcal{IH}^*_M in case (ii), and discrete
in case (iii).

 Our classification of limit laws for maj on SYT(λ) involves direct combinatorial estimates of the *cumulants*.

- Our classification of limit laws for maj on SYT(λ) involves direct combinatorial estimates of the *cumulants*.
- ▶ By Stanley's *q*-hook formula, these are equivalent to the differences $\sum_{j=1}^{n} j^d \sum_{c \in \lambda} h_c^d$. We show they are $\Theta(\operatorname{aft}(\lambda)n^d)$.

- Our classification of limit laws for maj on SYT(λ) involves direct combinatorial estimates of the *cumulants*.
- By Stanley's *q*-hook formula, these are equivalent to the differences ∑ⁿ_{j=1} j^d − ∑_{c∈λ} h^d_c. We show they are Θ(aft(λ)n^d).
- Consequently, κ^{X*}_d = Θ(aft(λ)^{1-d/2}) → 0 if aft(λ) → ∞ and d > 2, which agrees with κ^{N(0,1)}_d in the limit. Now apply the method of moments.

- Our classification of limit laws for maj on SYT(λ) involves direct combinatorial estimates of the *cumulants*.
- By Stanley's *q*-hook formula, these are equivalent to the differences ∑ⁿ_{j=1} j^d − ∑_{c∈λ} h^d_c. We show they are Θ(aft(λ)n^d).
- Consequently, κ^{X*}_d = Θ(aft(λ)^{1-d/2}) → 0 if aft(λ) → ∞ and d > 2, which agrees with κ^{N(0,1)}_d in the limit. Now apply the method of moments.
- ► Asymptotic normality is "obvious" when ∑_{j=1}ⁿ j^d dominates, though for small aft(λ), there is enormous cancellation resulting in degenerate cases with Irwin–Hall distributions.

For size on plane partitions in an a by b by c box, we get asymptotic normality if and only if median{a, b, c} → ∞.

For size on plane partitions in an a by b by c box, we get asymptotic normality if and only if median{a, b, c} → ∞. If ab converges and c → ∞, the limit law is *IH*^{*}_{ab}.

- For size on plane partitions in an a by b by c box, we get asymptotic normality if and only if median{a, b, c} → ∞. If ab converges and c → ∞, the limit law is *IH*^{*}_{ab}.
- For "rank" on SSYT_{≤m}(λ), we get asymptotic normality in many cases, *IH_M* in others, and *D*^{*} where

$$\mathcal{D} \coloneqq \sum_{1 \leq i < j \leq m} \mathcal{U}[x_i, x_j]$$

in still others.

- For size on plane partitions in an a by b by c box, we get asymptotic normality if and only if median{a, b, c} → ∞. If ab converges and c → ∞, the limit law is *IH*^{*}_{ab}.
- For "rank" on SSYT_{≤m}(λ), we get asymptotic normality in many cases, *IH_M* in others, and *D*^{*} where

$$\mathcal{D} \coloneqq \sum_{1 \leq i < j \leq m} \mathcal{U}[x_i, x_j]$$

in still others. No complete classification.

- For size on plane partitions in an a by b by c box, we get asymptotic normality if and only if median{a, b, c} → ∞. If ab converges and c → ∞, the limit law is *IH*^{*}_{ab}.
- For "rank" on SSYT_{≤m}(λ), we get asymptotic normality in many cases, *IH_M* in others, and *D*^{*} where

$$\mathcal{D} \coloneqq \sum_{1 \leq i < j \leq m} \mathcal{U}[x_i, x_j]$$

in still others. No complete classification.

► For maj on linear extensions of labeled forests, we get asymptotic normality "generically", but we also get E* where

$$\boldsymbol{\mathcal{E}} \coloneqq \sum_{i=1}^{\infty} \mathcal{U}[-t_i, t_i]$$

where $t_1 \ge t_2 \ge \cdots \ge 0$ and $\sum_{i=1}^{\infty} t_i^2 < \infty$.

- For size on plane partitions in an a by b by c box, we get asymptotic normality if and only if median{a, b, c} → ∞. If ab converges and c → ∞, the limit law is *IH*^{*}_{ab}.
- For "rank" on SSYT_{≤m}(λ), we get asymptotic normality in many cases, *IH_M* in others, and *D*^{*} where

$$\mathcal{D} \coloneqq \sum_{1 \leq i < j \leq m} \mathcal{U}[x_i, x_j]$$

in still others. No complete classification.

► For maj on linear extensions of labeled forests, we get asymptotic normality "generically", but we also get E* where

$$\boldsymbol{\mathcal{E}} := \sum_{i=1}^{\infty} \mathcal{U}[-t_i, t_i]$$

where $t_1 \ge t_2 \ge \cdots \ge 0$ and $\sum_{i=1}^{\infty} t_i^2 < \infty$. Classification is "mostly" complete.

References I

- S. C. Billey, M. Konvalinka, and J. P. Swanson, Asymptotic normality of the major index on standard tableaux, 2019, (Check arXiv on Monday!) [submitted].
- A. Baxter and D. Zeilberger, *The Number of Inversions and the Major Index of Permutations are Asymptotically Joint-Independently Normal (Second Edition!)*, 2010, arXiv:1004.1160.
- H. Gupta, A new look at the permutations of the first n natural numbers, Indian J. Pure Appl. Math. 9 (1978), no. 6, 600–631. MR 495467
- D. P. Roselle, Coefficients associated with the expansion of certain products, Proc. Amer. Math. Soc. 45 (1974), 144–150. MR 0342406
- J. P. Swanson, *On a theorem of baxter and zeilberger via a result of roselle*, 2019, arXiv:1902.06724 [submitted].

References II

 D. Zeilberger, The number of inversions and the major index of permutations are asymptotically joint-independently normal, Personal Web Page, http://sites.math.rutgers.edu/~ zeilberg/mamarim/mamarimhtml/invmaj.html (accessed: 2018-01-25).

$_{\tau}\mathcal{H}A\mathcal{N}\mathcal{K}_{\mathcal{S}}$