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Inversion number definition

Definition
The symmetric group is

Sn := {bijections π : {1, 2, . . . , n} → {1, 2, . . . , n}}.

The elements are permutations.

Definition
The inversion number of π ∈ Sn is

inv(π) := #{(i , j) : 1 ≤ i < j ≤ n, π(i) > π(j)}.

For example,

inv(35142) = #{(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)} = 6.

Zeilberger: this is the “most important permutation statistic”.
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Inversion number bijection

Lemma (Classical)

The map

Φ: Sn → {α ∈ Zn
≥0 : (α1, . . . , αn) ≤ (n − 1, n − 2, . . . , 1, 0)}

αi := #{j : i < j ≤ n, π(i) > π(j)}

is a bijection.

For example:

inv(35142) = #{(1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5)} = 6

(2,5)

(1,5) (2,4)

(1,3) (2,3) (4,5)

⇒ Φ(35142) = (2, 3, 0, 1, 0)
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Inversion number distribution

Clearly inv(π) = α1 + · · ·+ αn. Hence:

Corollary

I inv on Sn is symmetrically distributed with mean
((n − 1) + (n − 2) + · · ·+ 0)/2 = 1

2

(n
2

)
.

I The ordinary generating function of inv on Sn is

∑
π∈Sn

qinv(π) =
n∏

i=1

n−i∑
αi=0

qαi

= (1 + q + · · ·+ qn−1)(1 + q + · · ·+ qn−2) · · · (1)

=: [n]q!

I Xinv ∼ Un−1 + · · ·+ U1 is the sum of independent discrete
uniform random variables.
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Inversion number distribution

Theorem (Feller ’45; implicit earlier)

As n→∞, Xinv is asymptotically normal.

That is, for all u ∈ R,

lim
n→∞

P[X ∗inv ≤ u] =
1√
2π

∫ u

−∞
e−x

2/2 dx

where

X ∗inv :=
Xinv − µn

σn

with

µn =
n(n − 1)

4
, σ2

n =
2n3 + 3n2 − 5n

72
.
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Inversion number application

Theorem (Feller ’45; implicit earlier)

As n→∞, Xinv is asymptotically normal.

Example (Kendall’s τ test)

Say some process generated distinct real numbers x1, x2, . . . , xn,
one per day. You want to know if the process is independent of
time. Turn the data into a permutation π while preserving the
relative order of data points and compute inv(π). Since
Xinv ≈ N (µn, σn), independent data would have

|(inv(π)− µn)/σn| ≤ 3

≈ 99.7% of the time. So, if this z-score is too big, say larger
than 3, the process is very likely time-dependent.



Major index definition

Definition (MacMahon, early 1900’s)

The descent set of π ∈ Sn is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1}.

The major index is

maj(π) :=
∑

i∈Des(π)

i .

For example,

maj(25143) = maj(25.14.3) = 2 + 4 = 6.

Zeilberger: this is the “second most important permutation
statistic”.
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Major index bijection

Lemma (Gupta, ’78)

For a given π ∈ Sn−1, let Cπ ⊂ Sn be the n permutations obtained
by inserting n into π in all possible ways. Then

{maj(π′)−maj(π) : π′ ∈ Cπ} = {0, 1, . . . , n − 1}.

Corollary

There is a bijection

Ψ: {α ∈ Zn
≥0 : (α1, . . . , αn) ≤ (n − 1, n − 2, . . . , 1, 0)} → Sn

for which maj(Ψ(α)) = α1 + · · ·+ αn.

Corollary

The bijection Ψ ◦ Φ: Sn → Sn sends inv to maj. Hence
Xinv ∼ Xmaj and Xmaj is asymptotically normal as n→∞.
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Major index bijection

Example

Use α = (2, 3, 0, 1, 0). Then:

maj ∆ maj

1 0 0

2.1 1 1
2.13 1 0

2.14.3 4 3
25.14.3 6 2

Hence Ψ((2, 3, 0, 1, 0)) = 25143. Since Φ(35142) = (2, 3, 0, 1, 0),
we have

(Ψ ◦ Φ)(35142) = 25143

inv(35142) = 6 = maj(25143).
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Inv and maj

Question (Svante Janson)

What is the joint distribution of inv and maj on Sn?

In particular,
what is the asymptotic correlation as n→∞?

Theorem (Baxter–Zeilberger)

inv and maj on Sn are jointly independently asymptotically
normally distributed as n→∞. That is, for all u, v ∈ R,

lim
n→∞

P[X ∗inv ≤ u,X ∗maj ≤ v ] =
1

2π

∫ u

−∞

∫ v

−∞
e−x

2/2e−y
2/2 dy dx

where X ∗ := (X − µn)/σn with µn, σn from Feller’s theorem.
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Inv and maj

The Baxter–Zeilberger proof can be summarized as follows:

1. The method of moments says it suffices to show that for each
fixed (s, t) ∈ Z2

≥0, the (s, t)-mixed moment E[(X ∗inv)s(X ∗maj)
t ]

tend to the (s, t)-mixed moment of N (0, 1)×N (0, 1) as
n→∞.

2. Let Fn,i (p, q) :=
∑

π∈Sn
πn=i

pinv(π)qmaj(π). Derive a recurrence for

Fn,i (p, q) by considering the effect of removing the last letter.

3. Use the recurrence and Taylor expansion to derive a recurrence
for the mixed factorial moments E[(X ∗inv)(s)(X ∗maj)

(t)].

4. Verify the leading terms of the mixed factorial moments agree
with the moments of N (0, 1)×N (0, 1).

The details are involved and are perhaps best handled by a
computer, which can easily compute all the relevant quantities
using the recursions. The approach gives me no intuition for why
the result should be true.
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The $300 question

“Referee Dan Romik believe[s] that we should
mention, at this point, the ‘explicit’ formula of Roselle
(mentioned by Knuth) in terms of a certain infinite
double product for the q-exponential generating function
of
∑

π∈Sn p
inv(π)qmaj(π). Romik believes that this may

lead to an alternative proof, that would even imply a
stronger result (a local limit law). We strongly doubt this,
and [Doron Zeilberger] is hereby offering $300 for the
first person to supply such a proof, whose length should
not exceed the length of this article [13 pages].” (***)



Roselle’s formula

Definition
Let Hn(p, q) :=

∑
π∈Sn p

inv(π)qmaj(π).

Theorem (Roselle)

We have ∑
n≥0

Hn(p, q)zn

(p)n(q)n
=
∏

a,b≥0

1

1− paqbz

where (p)n := (1− p)(1− p2) · · · (1− pn).
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A correction factor

If inv and maj on Sn were independent, we would have

Hn(p, q)

n!
=

[n]p![n]q!

n!2
.

In this case, joint asymptotic normality would follow trivially from
individual asymptotic normality.

Roselle’s formula can be
reinterpreted as saying

Hn(p, q)

n!
=

[n]p![n]q!

n!2
Fn(p, q)

where

Fn(p, q) =
n! · g.f. of size-n multisets from Z2

≥0

g.f. of size-n lists from Z2
≥0

.

Intuitively, Fn is “1 to first order”. This explains “why”
Baxter–Zeilberger’s result holds and suggests an alternate proof.
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Explicit correction factor

Theorem (S.)

There are constants cµ ∈ Z indexed by integer partitions µ such
that
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n!
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[n]p![n]q!

n!2
Fn(p, q)

where

Fn(p, q) =
n∑

d=0

[(1− p)(1− q)]d
∑
µ`n

`(µ)=n−d

cµ∏
i [µi ]p[µi ]q

.

Explicitly,

cµ =
∑
λ`n

λ!
∑

Λ:Π(λ)≤Λ
type(Λ)=µ

µ(Π(λ),Λ).

The d = 0 contribution is 1. Hence, Hn(1, q) = [n]q!.
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Estimating the correction factor

Theorem (S.)

Uniformly on compact subsets of R2, we have

Fn(e is/σn , e it/σn)→ 1 as n→∞

The argument uses the explicit form of cµ, the explicit form of the
Möbius function on the lattice of set partitions, and some
estimates to bound the d > 0 contributions to Fn.
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Estimating the correction factor

Technical details: easy manipulations give, for |s|, |t| ≤ M and n
large,

|Fn(e is/σn , e it/σn)− 1| ≤
n∑

d=1

|st|d

σ2d
n

∑
λ`n

λ!
∑

Λ:Π(λ)≤Λ
#Λ=n−d

|µ(Π(λ),Λ)|.

Lemma
Suppose λ ` n with `(λ) = n − k, and fix d . Then∑

Λ:Π(λ)≤Λ
#Λ=n−d

µ(Π(λ),Λ) = (−1)d−k
∑

Λ∈P[n−k]
#Λ=n−d

∏
A∈Λ

(#A− 1)!

and the terms on the left all have the same sign (−1)d−k . The
sums are empty unless n ≥ d ≥ k ≥ 0.
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Lemma
Let λ ` n with `(λ) = n − k and n ≥ d ≥ k ≥ 0. Then∑
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For n ≥ d ≥ k ≥ 0, we have∑

λ`n
`(λ)=n−k

λ!
∑

Λ:Π(λ)≤Λ
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Estimating the correction factor

Lemma
For n sufficiently large, for all 0 ≤ d ≤ n we have∑

λ`n
λ!

∑
Λ:Π(λ)≤Λ
#Λ=n−d

|µ(Π(λ),Λ)| ≤ 3n2d .

Putting it all together:

|Fn(e is/σn , e it/σn)− 1| ≤ 3
n∑

d=1

(Mn)2d

σ2d
n

(Mn)2d/σ2d
n ∼ (362M2/n)d

lim
n→∞

n∑
d=1

(Mn)2d

σ2d
n

= 0.



Finishing up

Definition
The characteristic function of a real-valued random variable X is

φX : R→ C
φX (t) := E[e iXt ].

If X has a density function, φX is its Fourier transform.

Theorem (Lévy Continuity)

X1,X2, . . . converges in distribution to X if and only if for all
t ∈ R,

lim
n→∞

φXn(t) = φX (t).

A similar result holds for Rk -valued random variables.
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Finishing up

The equation
Hn(p, q)

n!
=

[n]p![n]q!

n!2
Fn(p, q)

can be reinterpreted as

φ(X ∗
inv,X

∗
maj)

(s, t) = φX ∗
inv

(s)φX ∗
maj

(t)Fn(e is/σn , e it/σn).

For fixed s, t, using the theorem above and Feller’s result gives

lim
n→∞

φ(X ∗
inv,X

∗
maj)

(s, t) = e−s
2/2e−t

2/2 = φ(N (0,1),N (0,1))(s, t).

This completes the proof of the Baxter–Zeilberger theorem using
Roselle’s formula.
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Zeilberger has accepted the new argument (8 pages) as fulfilling
the conditions of the prize!
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Local limit theorem?

Romik’s question was largely motivated by a desire to find a local
limit theorem. Here, this would be a statement of the form

P[inv = u,maj = v ] =
1

2πσn
e−(u−µn)2/σn−(v−µn)2/σn + O(f (n))

with an explicit error bound f (n) where limn→∞ f (n) = 0.

The method of moments has no hope of proving such a result. A
standard approach to local limit theorems is to use the Cauchy
integral formula on the generating function, though such
arguments are typically lengthy and technical. A local limit
theorem in this context will be the subject of a future article.
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Variations

Question
There are many generalizations and variations of Mahonian
statistics. What can be said of their distributions?

Question
What are the possible normalized limit laws for maj on
tableaux?
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Partitions

Definition
A partition λ of n is a sequence of positive integers λ1 ≥ λ2 ≥ · · ·
such that

∑
i λi = n.

Partitions can be visualized by their Ferrers
diagram

λ = (5, 3, 1)↔

Theorem
(Young, early 1900’s) The complex inequivalent irreducible
representations Sλ of Sn are canonically indexed by partitions of n.
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Standard tableaux

Definition
A standard Young tableau (SYT ) of shape λ ` n is a filling of the
cells of the Ferrers diagram of λ with 1, 2, . . . , n which increases
along rows and decreases down columns.

T =
1 3 6 7 9

2 5 8

4

∈ SYT(λ)

Descent set: {1, 3, 7}. Major index: 1 + 3 + 7 = 11.

Definition
The descent set of T ∈ SYT(λ) is the set

Des(T ) := {1 ≤ i < n : i + 1 is in a lower row of T than i}.

The major index of T ∈ SYT(λ) is maj(T ) :=
∑

i∈Des(T ) i .
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Standard tableaux
For λ = (5, 3, 1),∑
T∈SYT(λ)

qmaj(T ) = q5(q18 + 2q17 + 4q16 + 5q15 + 8q14 + 10q13

+ 13q12 + 14q11 + 16q10 + 16q9 + 16q8 + 14q7

+ 13q6 + 10q5 + 8q4 + 5q3 + 4q2 + 2q + 1).

The coefficients of q−5f (5,3,1)(q):

(1, 2, 4, 5, 8, 10, 13, 14, 16, 16, 16, 14, 13, 10, 8, 5, 4, 2, 1)

0 5 10 15

2

4

6

8

10

12

14

16
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maj on SYT(λ) limit law classification

Definition
Let aft(λ) := |λ| −max{λ1, λ

′
1} and let

IHM := U [0, 1] + · · ·+ U [0, 1]

be the Mth Irwin–Hall distribution.

Theorem (Billey–Konvalinka–S. ’19)

Let λ(1), λ(2), . . . be a sequence of partitions. Let Xn denote the
major index statistic on standard tableaux of shape λ(n) sampled
uniformly, and let X ∗n := (Xn − µn)/σn. Then X ∗n converges in
distribution if and only if

(i) aft(λ(n))→∞; or

(ii) |λ(n)| → ∞ and aft(λ(n))→ M <∞; or

(iii) the distribution of X ∗
λ(n) [maj] is eventually constant.

The limit law is N (0, 1) in case (i), IH∗M in case (ii), and discrete
in case (iii).
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maj on SYT(λ) approach

I Our classification of limit laws for maj on SYT(λ) involves
direct combinatorial estimates of the cumulants.

I By Stanley’s q-hook formula, these are equivalent to the
differences

∑n
j=1 j

d −
∑

c∈λ h
d
c . We show they are

Θ(aft(λ)nd).

I Consequently, κX
∗

d = Θ(aft(λ)1−d/2)→ 0 if aft(λ)→∞ and

d > 2, which agrees with κ
N (0,1)
d in the limit. Now apply the

method of moments.

I Asymptotic normality is “obvious” when
∑n

j=1 j
d dominates,

though for small aft(λ), there is enormous cancellation
resulting in degenerate cases with Irwin–Hall distributions.
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Further limit laws

I For size on plane partitions in an a by b by c box, we get
asymptotic normality if and only if median{a, b, c} → ∞.

If
ab converges and c →∞, the limit law is IH∗ab.

I For “rank” on SSYT≤m(λ), we get asymptotic normality in
many cases, IHM in others, and D∗ where

D :=
∑

1≤i<j≤m
U [xi , xj ]

in still others. No complete classification.

I For maj on linear extensions of labeled forests, we get
asymptotic normality “generically”, but we also get E∗ where

E :=
∞∑
i=1

U [−ti , ti ]

where t1 ≥ t2 ≥ · · · ≥ 0 and
∑∞

i=1 t
2
i <∞. Classification is

“mostly” complete.
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