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Outline

I We first apply the cyclic sieving phenomenon of
Reiner–Stanton–White to prove Schur expansions due to
Kraśkiewicz–Weyman related to Thrall’s problem.

I The resulting argument is remarkably simple and nearly
bijective. It is a rare example of the CSP being used to prove
other results, rather than vice-versa.

I We then apply our approach to prove other results of
Stembridge and Schocker.

I Guided by our experience, we suggest a new approach to
Thrall’s problem.
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Kraśkiewicz–Weyman related to Thrall’s problem.

I The resulting argument is remarkably simple and nearly
bijective. It is a rare example of the CSP being used to prove
other results, rather than vice-versa.

I We then apply our approach to prove other results of
Stembridge and Schocker.

I Guided by our experience, we suggest a new approach to
Thrall’s problem.



Outline

I We first apply the cyclic sieving phenomenon of
Reiner–Stanton–White to prove Schur expansions due to
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Thrall’s problem

What is Thrall’s problem?

Definition
Let...

I V be a finite-dimensional vector space over C;

I T (V ) := ⊕n≥0V
⊗n be the tensor algebra of V ;

I L(V ) be the free Lie algebra on V , namely the Lie subalgebra
of T (V ) generated by V ;

I Ln(V ) := L(V ) ∩ V⊗n be the nth Lie module;

I U(L(V )) be the universal enveloping algebra of L(V ); and

I Symm(M) be the mth symmetric power of a vector space M.
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Thrall’s problem

By an appropriate version of the Poincaré–Birkhoff–Witt Theorem,

T (V ) ∼= U(L(V )) ∼=
⊕

λ=1m1 2m2 ···
Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · ·

as graded GL(V )-modules.

Definition (Thrall [Thr42])

The higher Lie module associated to λ = 1m12m2 · · · is

Lλ(V ) := Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · · .

Thus we have a canonical GL(V )-module decomposition

T (V ) ∼= ⊕λ∈ParLλ(V ).

Question (Thrall’s Problem)

What are the irreducible decompositions of the Lλ(V )?
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T (V ) ∼= U(L(V )) ∼=
⊕

λ=1m1 2m2 ···
Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · ·

as graded GL(V )-modules.

Definition (Thrall [Thr42])

The higher Lie module associated to λ = 1m12m2 · · · is

Lλ(V ) := Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · · .

Thus we have a canonical GL(V )-module decomposition

T (V ) ∼= ⊕λ∈ParLλ(V ).

Question (Thrall’s Problem)

What are the irreducible decompositions of the Lλ(V )?



Thrall’s problem

By an appropriate version of the Poincaré–Birkhoff–Witt Theorem,
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Thrall’s problem

Lλ(V ) := Symm1(L1(V ))⊗ Symm2(L2(V ))⊗ · · ·.

I The Littlewood–Richardson rule reduces Thrall’s problem to
the rectangular case λ = (ab) with b rows of length a.

I In the rectangular case,

L(ab)(V ) = Symb La(V )

I In the one-row case,

L(a)(V ) = La(V ).

Kraśkiewicz–Weyman [KW01] solved Thrall’s problem in the
one-row case. We next describe their answer.
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Partitions

Definition
A partition λ of n is a sequence of positive integers λ1 ≥ λ2 ≥ · · ·
such that

∑
i λi = n. Partitions can be visualized by their Ferrers

diagram

λ = (5, 3, 1)↔

Theorem
(Young, early 1900’s) The complex inequivalent irreducible
representations Sλ of Sn are canonically indexed by partitions of n.
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Standard tableaux

Definition
A standard Young tableau (SYT ) of shape λ ` n is a filling of the
cells of the Ferrers diagram of λ with 1, 2, . . . , n which increases
along rows and decreases down columns.

T = 1 3 6 7 9

2 5 8

4

∈ SYT(λ)

Descent set: {1, 3, 7}. Major index: 1 + 3 + 7 = 11.

Definition
The descent set of T ∈ SYT(λ) is the set

Des(T ) := {1 ≤ i < n : i + 1 is in a lower row of T than i}.

The major index of T ∈ SYT(λ) is maj(T ) :=
∑

i∈Des(T ) i .
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Thrall’s problem

Definition
Let

aλ,r := #{T ∈ SYT(λ) : maj(T ) ≡n r}.

Theorem (Kraśkiewicz–Weyman [KW01])

The multiplicity of the GL(V )-irreducible V λ in Ln(V ) is aλ,1.



Thrall’s problem

Definition
Let

aλ,r := #{T ∈ SYT(λ) : maj(T ) ≡n r}.
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Thrall’s problem
Kraśkiewicz–Weyman’s argument hinges on the following key
formula:

SYT(λ)maj(ωr
n) = χλ(σrn) (1)

for all r ∈ Z, where:

SYT(λ)maj(q) :=
∑

T∈SYT(λ)

qmaj(T ),

I ωn is any primitive nth root of unity,

I χλ(σ) is the character of Sλ at σ, and

I σn = (1 2 · · · n) ∈ Sn.

Their approach involves results of Lusztig and Stanley on
coinvariant algebras and an intricate though beautiful argument
involving `-decomposable partitions. The key formula bears a
striking resemblance to the cyclic sieving phenomenon of
Reiner–Stanton–White, which we describe next.
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Words

Definition

I A word is a sequence

w = w1w2 · · ·wn s.t. wi ∈ Z≥1.

I Wn is the set of words of length n.

I The content of w is the weak composition α = (α1, α2, . . .)
where αj = #{i : wi = j}.

I Wα is the set of words of content α.

For example, w = 412144 ∈W(2,1,0,3) ⊂W6.
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Major index on words

Definition (MacMahon, early 1900’s)

The descent set of w ∈Wn is

Des(w) := {1 ≤ i ≤ n − 1 : wi > wi+1}.

The major index is

maj(w) :=
∑

i∈Des(w)

i .

For example,

Des(412144) = Des(4.12.144) = {1, 3}
maj(412144) = 1 + 3 = 4.
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Major index on words

Theorem (MacMahon [Mac])

The major index generating function on Wα ⊂Wn is

Wmaj
α (q) :=

∑
w∈Wα

qmaj(w) =
[n]q!∏

i≥1[αi ]q!
=

(
n

α

)
q

where [n]q := (1− qn)/(1− q) = 1 + q + · · ·+ qn−1 and
[n]q! := [n]q[n − 1]q · · · [1]q.
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Major index on words

Wmaj
α (q) =

(
n

α

)
q

We have
(n
α

)
q=1

=
(n
α

)
= # Wα.

Exercise
Let ωd be any primitive dth root of unity. If d | n,(

n

α

)
q=ωd

=

{( n/d
α1/d ,α2/d ,...

)
if d | α1, α2, . . .

0 otherwise.

Question
What does

(n
α

)
q=ωd

count?
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Major index on words

Definition
Let σn := (1 2 · · · n) ∈ Sn be the standard n-cycle. Let Cn := 〈σn〉,
which acts on each Wα ⊂Wn by rotation.

Exercise
If σ ∈ Cn has order d | n, then

#Wσ
α := #{w ∈Wα : σ(w) = w}

=

{( n/d
α1/d ,α2/d ,...

)
if d | α1, α2, . . .

0 otherwise.

Corollary

For all σ ∈ Cn of order d | n,

Wmaj
α (ωd) = # Wσ

α .
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The cyclic sieving phenomenon

Definition (Reiner–Stanton–White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and
suppose X (q) ∈ Z[q]. The triple (X ,C ,X (q)) exhibits the cyclic
sieving phenomenon (CSP) if for all elements σd ∈ C of order d ,

X (ωd) = #X σd .
Remark

I d = 1 gives X (1) = #X , so X (q) is a q-analogue of #X .

I #X σd = TrC{X}(σd), so the CSP says that evaluations of
X (q) encode the isomorphism type of the C -action on X .

I X (q) is uniquely determined modulo qn − 1. If degX (q) < n,
the kth coefficient of X (q) is the number of elements of X
whose stabilizer has order dividing k .
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The cyclic sieving phenomenon
Theorem ([RSW04, Prop. 4.4])

The triple (Wα,Cn,W
maj
α (q)) exhibits the CSP.

That is, maj is a “universal” cyclic sieving statistic on words Wn

for the Sn-action in the following sense:

Corollary ([BER11, Prop. 3.1])

Let W be a finite set of length n words closed under the Sn-action.
Then, the triple

(W,Cn,W
maj(q))

exhibits the CSP.

Corollary

By “changing basis” from Schur functions and irreducible
characters to homogeneous symmetric functions and induced trivial
characters, Kraśkiewicz–Weyman’s key formula (1) holds:

SYT(λ)maj(ωr
n) = χλ(σrn).
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Schur–Weyl duality
To connect cyclic sieving to Thrall’s problem, we require some
standard GL(V )-representation theory.

Definition
The Schur character of a GL(V )-module E is

(chE )(x1, . . . , xm) := TrE (diag(x1, . . . , xm)),

where m = dim(V ).

Definition
Let M be an Sn-module. The Schur–Weyl dual of M is the
GL(V )-module

E (M) := V⊗n ⊗CSn M.

Theorem (Schur–Weyl duality)

For any Sn-module M,

lim
m→∞

chE (M) = ch(M).
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Thrall’s problem and necklaces

Definition

I A necklace is a Cn-orbit [w ] of a word w ∈Wn, e.g.

[221221] = {221221, 122122, 212212}.

I [221] has trivial stabilizer so is primitive.

I [221221] is not primitive and has frequency 2 since it’s made
of two copies of a primitive word.
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Thrall’s problem and necklaces

Proposition (Klyachko [Kly74])

There is a weight space basis for E (exp(2πi/n)↑SnCn
) indexed by

primitive necklaces of length n words.

Theorem (Marshall Hall [Hal59, Lem. 11.2.1])

Ln also has a weight space basis indexed by primitive necklaces.

Corollary (Klyachko [Kly74])

The Schur–Weyl dual of exp(2πi/n)↑SnCn
is Ln.

To apply cyclic sieving, we need generating functions over words,
not primitive necklaces.
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Thrall’s problem and necklaces

Definition
Let

NFDn,r := {necklaces of length n words with frequency dividing r}.

Hence NFDn,1 consists of primitive necklaces.

Proposition ([AS18a])

There is a weight space basis for E (exp(2πir/n)↑SnCn
) indexed by

NFDn,r .

Corollary

We have

n∑
r=1

qr ch exp(2πir/n)↑SnCn
=

n∑
r=1

qr NFDcont
n,r (x).

However, as r varies, the NFDn,r are not disjoint.
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Flex

To fix this, we use the following.

Definition ([AS18b])

The statistic flex : Wn → Z≥0 is flex(w) := freq(w) · lex(w) where
lex(w) is the position at which w appears in the lexicographic
order of its rotations, starting at 1.

Example

flex(221221) = 2 · 3 = 6 since 221221 is the concatenation of 2
copies of the primitive word 221 and 221221 is third in
lexicographic order amongst its 3 cyclic rotations.

Lemma
We have

n∑
r=1

qr NFDcont
n,r (x) = Wcont;flex

n (x; q).
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Flex

Flex is a “universal” cyclic sieving statistic on words Wn for
Cn-actions in the following sense:

Lemma ([AS18b])

Let W be a finite set of length n words closed under the Cn-action,
where Cn acts by cyclic rotations. Then, the triple
(W ,Cn,W

flex(q)) exhibits the CSP.

Corollary

We have
Wcont;flex

n (q) = W
cont;majn
n (q)

where 1 ≤ majn ≤ n is maj modulo n.
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Proving Kraśkiewicz–Weyman’s theorem
We finally have the following remarkably direct, largely bijective
proof of Kraśkiewicz–Weyman’s result using cyclic sieving.

1. Using Schur–Weyl duality and Hall’s basis, chLn can be
replaced by ch exp(2πi/n)↑SnCn

.
2. Using the generalized Klyachko basis and flex,

n∑
r=1

qr ch exp(2πir/n)↑SnCn
= Wcont;flex

n (x; q).

3. Using universal cyclic sieving on words for Sn- or Cn-actions,

Wcont;flex
n (x; q) = W

cont;majn
n (x; q).

4. Using the RSK algorithm w 7→ (P,Q) where
Des(w) = Des(Q),

W
cont;majn
n (x; q) =

∑
λ`n
r∈[n]

aλ,rq
r sλ(x). �
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Kraśkiewicz–Weyman open problems
There are multiple published proofs of Kraśkiewicz–Weyman’s
theorem. However, none of them give a bijective explanation for
the following symmetry:

Corollary

Let λ ` n. Then #{T ∈ SYT(λ) : maj(T ) ≡n r} depends only on
λ and gcd(n, r).

Open Problem

Find a bijective proof of the above symmetry.

Open Problem

Find a content-preserving bijection Φ: Wn →Wn such that
majn(w) = flex(Φ(w)).

Such a bijection Φ would give a bijective proof of the identity∑
λ`n

aλ,r sλ(x) =
∑
λ`n

aλ,gcd(n,r)sλ(x).
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Cyclic group branching rules
Stembridge generalized Kraśkiewicz–Weyman’s result to describe
all branching rules for any 〈σ〉 ↪→ Sn where σ is of cycle type ν and
order `:

Theorem (Stembridge [Ste89])∑̀
r=1

qr ch(exp(2πir/`)↑Sn〈σ〉) =
∑
λ`n

T∈SYT(λ)

qmajν(T )sλ(x)

where majν is a generalization of majn.

We give a cyclic sieving-based proof of Stembridge’s result. The
first step is a natural generalization of Klyachko’s basis:

Proposition
ch exp(2πir/`)↑Sn〈σ〉= OFDcont

n,r (x)

where OFDn,r is the set of 〈σ〉-orbits with frequency (stabilizer
order) dividing r .

See the paper for more.
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Higher Lie modules

Recall that L(ab) = Symb La. Consequently,

chL(ab) = hb[La].

Thus Thrall’s problem is an instance of a plethysm problem. Such
problems are notoriously difficult.

The preceding arguments and results strongly suggest the need to
consider Thrall’s problem in the larger context of general branching
rules.
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Higher Lie modules

One may show that L(ab) is the Schur–Weyl dual of a certain

induced one-dimensional representation χr ,1↑SabCaoSb of the wreath
product Ca o Sb. Here Ca o Sb can be thought of as the subgroup of
permutations on ab letters which permute the b size-a intervals in
[ab] amongst themselves and cyclically rotate each size-a interval
independently.

Schocker [Sch03] gave a formula for the Schur expansion of
chL(ab), though it involves many divisions and subtractions in
general. We generalized Schocker’s result to all induced
one-dimensional representations of Ca o Sb using cyclic sieving.
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Higher Lie modules

Theorem (See [Sch03, Thm. 3.1])

For all a, b ≥ 1 and r = 1, . . . , a, we have

chLr ,1
(ab)

=
∑
λ`ab

∑
ν`b

1

zν

∑
τ |r∗ν

µτ (ν, r ∗ ν)aa∗νλ,τ

 sλ(x) and

chLr ,ε
(ab)

=
∑
λ`ab

∑
ν`b

(−1)b−`(ν)

zν

∑
τ |r∗ν

µτ (ν, r ∗ ν)aa∗νλ,τ

 sλ(x),

where maja∗ν is a variation on maj,

aa∗νλ,τ := #{Q ∈ SYT(λ) : maja∗ν(Q) = τ},

and µf (d , e) is a generalization of the classical Möbius function.

In our approach, the subtractions and divisions arise from the
underlying combinatorics using Möbius inversion and Burnside’s
lemma, respectively.
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A new approach
Our generalization of Schocker’s formula involves considering only
the one-dimensional representations of Ca o Sb, which may explain
its failure to be cancellation-free.

The earlier statistics flex, majn, and majν gave monomial
expansions of the branching rules in question as generating
functions on words. We have identified the monomial expansion for
Ca o Sb ↪→ Sab as a statistic generating function as follows.

Theorem
Fix integers a, b ≥ 1. We have∑

λ

dimSλ · ch
(
Sλ↑SabCaoSb

)
qλ = W

cont,flexba
ab (x; q)

= W
cont,majba
ab (x; q)

where the sum is over all a-tuples λ = (λ(1), . . . , λ(a)) of partitions
with

∑a
r=1 |λ(r)| = b and the qλ are independent indeterminates.
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A new approach

The statistics flexba and majba are somewhat involved. For flexba :

1. Write w ∈Wab in the form w = w1 · · ·wb where wj ∈Wa.

2. Let w (r) denote the subword of w whose letters are those
w j ∈Wa such that flex(w j) = r .

3. Totally order Wa lexicographically, so that RSK is well-defined
for words with letters from Wa.

4. Set
flexba(w) := (sh(w (1)), . . . , sh(w (a)))

where sh denotes the shape under RSK.

For majba , use maja instead of flex in step (2).
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A new approach

Previously, we were able to simply use RSK to go from the
monomial to the Schur basis, since majν depends only on Q(w).
However, flexba and majba do not have the corresponding property.

Open Problem

Fix a, b ≥ 1. Find a statistic

mashb
a : Wab → {a-tuples of partitions with total size b}

with the following properties.

(i) For all α � ab, majba (or equivalently flexba) and mashba are
equidistributed on Wα.

(ii) If v ,w ∈Wab satisfy Q(v) = Q(w), then
mashb

a(v) = mashba(w).
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A new approach

Finding such a statistic mashb
a would determine all branching rules

for Ca o Sb ↪→ Sab, in particularly solving Thrall’s problem, as
follows.

Corollary

Suppose mashb
a satisfies Properties (i) and (ii). Then

ch(Sλ↑SabCaoSb) =
∑
ν`ab

#{Q ∈ SYT(ν) : mashba(Q) = λ}
dim(Sλ)

sν(x),

where mashb
a(Q) := mashb

a(w) for any w ∈Wab with Q(w) = Q.



A new approach

When a = 1 and b = n, majn1(w) essentially reduces to sh(w), the
shape of w under RSK . When a = n and b = 1, maj1n(w)
essentially reduces to majn(w). Both of these satisfy (i) and (ii).
In this sense mashb

a , interpolates between the major index majn
and the shape under RSK , hence the name.

Question
Could a useful notion of “group sieving” for the wreath products
Ca o Sb be missing?

THANKS!
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