Thrall's problem: cyclic sieving, necklaces, and branching rules

FPSAC 2019 in Ljubljana, Slovenia July 2nd, 2019

Joshua P. Swanson University of California, San Diego

> Based on joint work with Connor Ahlbach

> > arXiv:1808.06043

Published version in *Electron. J. Combin.* 25 (2018): [AS18a] Slides: http://www.math.ucsd.edu/~jswanson/talks/2019_FPSAC.pdf

- ► We first apply the *cyclic sieving phenomenon* of Reiner–Stanton–White to prove Schur expansions due to Kraśkiewicz–Weyman related to *Thrall's problem*.
- ► The resulting argument is remarkably simple and nearly bijective. It is a rare example of the CSP being used to prove other results, rather than vice-versa.
- We then apply our approach to prove other results of Stembridge and Schocker.
- Guided by our experience, we suggest a new approach to Thrall's problem.

- ► We first apply the *cyclic sieving phenomenon* of Reiner–Stanton–White to prove Schur expansions due to Kraśkiewicz–Weyman related to *Thrall's problem*.
- ► The resulting argument is *remarkably simple and nearly bijective*. It is a rare example of the CSP being used *to prove other results*, rather than vice-versa.
- We then apply our approach to prove other results of Stembridge and Schocker.
- ► Guided by our experience, we *suggest a new approach* to Thrall's problem.

- ► We first apply the *cyclic sieving phenomenon* of Reiner–Stanton–White to prove Schur expansions due to Kraśkiewicz–Weyman related to *Thrall's problem*.
- ► The resulting argument is *remarkably simple and nearly bijective*. It is a rare example of the CSP being used *to prove other results*, rather than vice-versa.
- We then apply our approach to prove other results of Stembridge and Schocker.
- Guided by our experience, we suggest a new approach to Thrall's problem.

- ► We first apply the *cyclic sieving phenomenon* of Reiner–Stanton–White to prove Schur expansions due to Kraśkiewicz–Weyman related to *Thrall's problem*.
- ► The resulting argument is *remarkably simple and nearly bijective*. It is a rare example of the CSP being used *to prove other results*, rather than vice-versa.
- We then apply our approach to prove other results of Stembridge and Schocker.
- ► Guided by our experience, we *suggest a new approach* to Thrall's problem.

What is Thrall's problem?

Definition

- \triangleright V be a finite-dimensional vector space over \mathbb{C} ;
- ▶ $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- $ightharpoonup \mathcal{L}(V)$ be the *free Lie algebra on V*, namely the Lie subalgebra of T(V) generated by V;
- $\blacktriangleright \mathcal{L}_n(V) := \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $ightharpoonup \mathfrak{U}(\mathcal{L}(V))$ be the *universal enveloping algebra* of $\mathcal{L}(V)$; and
- ▶ $\operatorname{Sym}^{m}(M)$ be the *m*th *symmetric power* of a vector space M.

What is Thrall's problem?

Definition

- ightharpoonup V be a finite-dimensional vector space over \mathbb{C} ;
- ▶ $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- $ightharpoonup \mathcal{L}(V)$ be the *free Lie algebra on V*, namely the Lie subalgebra of T(V) generated by V;
- $\blacktriangleright \mathcal{L}_n(V) := \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $ightharpoonup \mathfrak{U}(\mathcal{L}(V))$ be the *universal enveloping algebra* of $\mathcal{L}(V)$; and
- ▶ $\operatorname{Sym}^m(M)$ be the *m*th *symmetric power* of a vector space M.

What is Thrall's problem?

Definition

- \triangleright V be a finite-dimensional vector space over \mathbb{C} ;
- ▶ $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- $ightharpoonup \mathcal{L}(V)$ be the *free Lie algebra on V*, namely the Lie subalgebra of T(V) generated by V;
- $\blacktriangleright \mathcal{L}_n(V) := \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $ightharpoonup \mathfrak{U}(\mathcal{L}(V))$ be the *universal enveloping algebra* of $\mathcal{L}(V)$; and
- ▶ $\operatorname{Sym}^m(M)$ be the *m*th *symmetric power* of a vector space M.

What is Thrall's problem?

Definition

- ightharpoonup V be a finite-dimensional vector space over \mathbb{C} ;
- ▶ $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- $ightharpoonup \mathcal{L}(V)$ be the *free Lie algebra on V*, namely the Lie subalgebra of T(V) generated by V;
- $\blacktriangleright \mathcal{L}_n(V) := \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $ightharpoonup \mathfrak{U}(\mathcal{L}(V))$ be the *universal enveloping algebra* of $\mathcal{L}(V)$; and
- ▶ $\operatorname{Sym}^m(M)$ be the *m*th *symmetric power* of a vector space M.

What is Thrall's problem?

Definition

- \triangleright V be a finite-dimensional vector space over \mathbb{C} ;
- ▶ $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- $ightharpoonup \mathcal{L}(V)$ be the *free Lie algebra on V*, namely the Lie subalgebra of T(V) generated by V;
- ▶ $\mathcal{L}_n(V) := \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $ightharpoonup \mathfrak{U}(\mathcal{L}(V))$ be the *universal enveloping algebra* of $\mathcal{L}(V)$; and
- ▶ $\operatorname{Sym}^m(M)$ be the *m*th *symmetric power* of a vector space M.

What is Thrall's problem?

Definition

- \triangleright V be a finite-dimensional vector space over \mathbb{C} ;
- ▶ $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- $ightharpoonup \mathcal{L}(V)$ be the *free Lie algebra on V*, namely the Lie subalgebra of T(V) generated by V;
- ▶ $\mathcal{L}_n(V) := \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $\blacktriangleright \ \mathfrak{U}(\mathcal{L}(V))$ be the *universal enveloping algebra* of $\mathcal{L}(V)$; and
- $ightharpoonup \operatorname{Sym}^m(M)$ be the *m*th *symmetric power* of a vector space M.

What is Thrall's problem?

Definition

- V be a finite-dimensional vector space over C;
- ▶ $T(V) := \bigoplus_{n \ge 0} V^{\otimes n}$ be the *tensor algebra of V*;
- $ightharpoonup \mathcal{L}(V)$ be the *free Lie algebra on V*, namely the Lie subalgebra of T(V) generated by V;
- $ightharpoonup \mathcal{L}_n(V) := \mathcal{L}(V) \cap V^{\otimes n}$ be the *nth Lie module*;
- $\blacktriangleright \mathfrak{U}(\mathcal{L}(V))$ be the *universal enveloping algebra* of $\mathcal{L}(V)$; and
- ▶ $\operatorname{Sym}^m(M)$ be the *m*th *symmetric power* of a vector space M.

By an appropriate version of the Poincaré-Birkhoff-Witt Theorem,

$$T(V)\cong \mathcal{U}(\mathcal{L}(V))\cong igoplus_{\lambda=1^{m_1}2^{m_2}\cdots} \mathsf{Sym}^{m_1}(\mathcal{L}_1(V))\otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V))\otimes \cdots$$

as graded GL(V)-modules.

Definition (Thrall [Thr42])

The higher Lie module associated to $\lambda = 1^{m_1} 2^{m_2} \cdots$ is

$$\mathcal{L}_{\lambda}(V) := \operatorname{\mathsf{Sym}}^{m_1}(\mathcal{L}_1(V)) \otimes \operatorname{\mathsf{Sym}}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

Thus we have a *canonical* GL(V)-module decomposition

$$T(V) \cong \bigoplus_{\lambda \in \operatorname{Par}} \mathcal{L}_{\lambda}(V).$$

Question (Thrall's Problem)

By an appropriate version of the Poincaré-Birkhoff-Witt Theorem,

$$T(V) \cong \mathcal{U}(\mathcal{L}(V)) \cong \bigoplus_{\lambda = 1^{m_1} 2^{m_2} \dots} \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

as graded GL(V)-modules.

Definition (Thrall [Thr42])

The higher Lie module associated to $\lambda = 1^{m_1} 2^{m_2} \cdots$ is

$$\mathcal{L}_{\lambda}(V) := \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

Thus we have a *canonical* GL(V)-module decomposition

$$T(V) \cong \bigoplus_{\lambda \in \operatorname{Par}} \mathcal{L}_{\lambda}(V).$$

Question (Thrall's Problem)

By an appropriate version of the Poincaré-Birkhoff-Witt Theorem,

$$T(V)\cong \mathcal{U}(\mathcal{L}(V))\cong igoplus_{\lambda=1^{m_1}2^{m_2}\cdots} \mathsf{Sym}^{m_1}(\mathcal{L}_1(V))\otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V))\otimes \cdots$$

as graded GL(V)-modules.

Definition (Thrall [Thr42])

The *higher Lie module* associated to $\lambda = 1^{m_1} 2^{m_2} \cdots$ is

$$\mathcal{L}_{\lambda}(V) := \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

Thus we have a *canonical* GL(V)-module decomposition

$$T(V) \cong \bigoplus_{\lambda \in \operatorname{Par}} \mathcal{L}_{\lambda}(V).$$

Question (Thrall's Problem)

By an appropriate version of the Poincaré-Birkhoff-Witt Theorem,

$$T(V) \cong \mathcal{U}(\mathcal{L}(V)) \cong \bigoplus_{\lambda = 1^{m_1} 2^{m_2} \dots} \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \dots$$

as graded GL(V)-modules.

Definition (Thrall [Thr42])

The *higher Lie module* associated to $\lambda = 1^{m_1} 2^{m_2} \cdots$ is

$$\mathcal{L}_{\lambda}(V) := \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

Thus we have a *canonical* GL(V)-module decomposition

$$T(V) \cong \bigoplus_{\lambda \in \operatorname{Par}} \mathcal{L}_{\lambda}(V).$$

Question (Thrall's Problem)

$$\mathcal{L}_{\lambda}(V) \coloneqq \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

- ► The Littlewood–Richardson rule reduces Thrall's problem to the rectangular case $\lambda = (a^b)$ with b rows of length a.
- In the rectangular case,

$$\mathcal{L}_{(a^b)}(V) = \operatorname{\mathsf{Sym}}^b \mathcal{L}_a(V)$$

▶ In the one-row case,

$$\mathcal{L}_{(a)}(V) = \mathcal{L}_{a}(V).$$

Kraśkiewicz–Weyman [KW01] solved Thrall's problem *in the* one-row case. We next describe their answer.

$$\mathcal{L}_{\lambda}(V) \coloneqq \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

- ► The Littlewood–Richardson rule reduces Thrall's problem to the rectangular case $\lambda = (a^b)$ with b rows of length a.
- In the rectangular case,

$$\mathcal{L}_{(a^b)}(V) = \operatorname{\mathsf{Sym}}^b \mathcal{L}_a(V)$$

▶ In the one-row case,

$$\mathcal{L}_{(a)}(V) = \mathcal{L}_{a}(V).$$

Kraśkiewicz–Weyman [KW01] solved Thrall's problem *in the* one-row case. We next describe their answer.

$$\mathcal{L}_{\lambda}(V) \coloneqq \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

- ► The Littlewood–Richardson rule reduces Thrall's problem to the rectangular case $\lambda = (a^b)$ with b rows of length a.
- In the rectangular case,

$$\mathcal{L}_{(a^b)}(V) = \operatorname{\mathsf{Sym}}^b \mathcal{L}_a(V)$$

In the one-row case,

$$\mathcal{L}_{(a)}(V) = \mathcal{L}_{a}(V).$$

Kraśkiewicz-Weyman [KW01] solved Thrall's problem in the one-row case. We next describe their answer.

$$\mathcal{L}_{\lambda}(V) \coloneqq \mathsf{Sym}^{m_1}(\mathcal{L}_1(V)) \otimes \mathsf{Sym}^{m_2}(\mathcal{L}_2(V)) \otimes \cdots$$

- ► The Littlewood–Richardson rule reduces Thrall's problem to the rectangular case $\lambda = (a^b)$ with b rows of length a.
- In the rectangular case,

$$\mathcal{L}_{(a^b)}(V) = \operatorname{\mathsf{Sym}}^b \mathcal{L}_a(V)$$

▶ In the one-row case,

$$\mathcal{L}_{(a)}(V) = \mathcal{L}_{a}(V).$$

Kraśkiewicz–Weyman [KW01] solved Thrall's problem *in the* one-row case. We next describe their answer.

Partitions

Definition

A partition λ of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their Ferrers diagram

$$\lambda = (5, 3, 1) \leftrightarrow$$

Theorem

(Young, early 1900's) The complex inequivalent irreducible representations S^{λ} of S_n are canonically indexed by partitions of n.

Partitions

Definition

A partition λ of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their Ferrers diagram

$$\lambda = (5,3,1) \leftrightarrow$$

Theorem

(Young, early 1900's) The complex inequivalent irreducible representations S^{λ} of S_n are canonically indexed by partitions of n.

Partitions

Definition

A partition λ of n is a sequence of positive integers $\lambda_1 \geq \lambda_2 \geq \cdots$ such that $\sum_i \lambda_i = n$. Partitions can be visualized by their Ferrers diagram

$$\lambda = (5,3,1) \leftrightarrow$$

Theorem

(Young, early 1900's) The complex inequivalent irreducible representations S^{λ} of S_n are **canonically** indexed by partitions of n.

Standard tableaux

Definition

A standard Young tableau (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with 1, 2, ..., n which increases along rows and decreases down columns.

Descent set: $\{1, 3, 7\}$. Major index: 1 + 3 + 7 = 11.

Definition

The *descent set* of $T \in SYT(\lambda)$ is the set

$$\mathsf{Des}(T) := \{1 \le i < n : i+1 \text{ is in a lower row of } T \text{ than } i\}.$$

The major index of $T \in SYT(\lambda)$ is maj $(T) := \sum_{i \in Des(T)} i$.

Standard tableaux

Definition

A standard Young tableau (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with 1, 2, ..., n which increases along rows and decreases down columns.

$$T = \begin{array}{|c|c|c|c|c|}\hline 1 & 3 & 6 & 7 & 9 \\ \hline 2 & 5 & 8 & \\ \hline 4 & & & \\ \hline\end{array} \in SYT(\lambda)$$

Descent set: $\{1, 3, 7\}$. Major index: 1 + 3 + 7 = 11.

Definition

The *descent set* of $T \in SYT(\lambda)$ is the set

 $Des(T) := \{1 \le i < n : i + 1 \text{ is in a lower row of } T \text{ than } i\}.$

The major index of $T \in SYT(\lambda)$ is $maj(T) := \sum_{i \in Des(T)} i$.

Standard tableaux

Definition

A standard Young tableau (SYT) of shape $\lambda \vdash n$ is a filling of the cells of the Ferrers diagram of λ with 1, 2, ..., n which increases along rows and decreases down columns.

$$T = \begin{array}{|c|c|c|c|c|}\hline 1 & 3 & 6 & 7 & 9 \\ \hline 2 & 5 & 8 & \\ \hline 4 & & & \\ \hline\end{array} \in SYT(\lambda)$$

Descent set: $\{1, 3, 7\}$. Major index: 1 + 3 + 7 = 11.

Definition

The *descent set* of $T \in SYT(\lambda)$ is the set

 $\mathsf{Des}(T) := \{1 \le i < n : i+1 \text{ is in a lower row of } T \text{ than } i\}.$

The major index of $T \in SYT(\lambda)$ is $maj(T) := \sum_{i \in Des(T)} i$.

Definition

Let

$$a_{\lambda,r} := \#\{T \in \mathsf{SYT}(\lambda) : \mathsf{maj}(T) \equiv_n r\}.$$

Theorem (Kraśkiewicz-Weyman [KW01])

The multiplicity of the $\mathsf{GL}(V)$ -irreducible $rac{V^\lambda}{}$ in $\mathcal{L}_n(V)$ is $a_{\lambda,1}.$

Definition

Let

$$a_{\lambda,r} := \#\{T \in \mathsf{SYT}(\lambda) : \mathsf{maj}(T) \equiv_n r\}.$$

Theorem (Kraśkiewicz-Weyman [KW01])

The multiplicity of the GL(V)-irreducible V^{λ} in $\mathcal{L}_n(V)$ is $a_{\lambda,1}$.

Kraśkiewicz–Weyman's argument hinges on the following key formula:

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r)$$
 (1)

for all $r \in \mathbb{Z}$, where:

$$\mathsf{SYT}(\lambda)^{\mathsf{maj}}(q) \coloneqq \sum_{T \in \mathsf{SYT}(\lambda)} q^{\mathsf{maj}(T)},$$

- $\triangleright \omega_n$ is any primitive *n*th root of unity,
- $\triangleright \chi^{\lambda}(\sigma)$ is the character of S^{λ} at σ , and

Kraśkiewicz–Weyman's argument hinges on the following key formula:

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r)$$
 (1)

for all $r \in \mathbb{Z}$, where:

$$\mathsf{SYT}(\lambda)^{\mathsf{maj}}(q) \coloneqq \sum_{T \in \mathsf{SYT}(\lambda)} q^{\mathsf{maj}(T)},$$

- $\triangleright \omega_n$ is any primitive *n*th root of unity,
- $\triangleright \chi^{\lambda}(\sigma)$ is the character of S^{λ} at σ , and

Kraśkiewicz–Weyman's argument hinges on the following key formula:

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r)$$
 (1)

for all $r \in \mathbb{Z}$, where:

$$\mathsf{SYT}(\lambda)^{\mathsf{maj}}(q) \coloneqq \sum_{T \in \mathsf{SYT}(\lambda)} q^{\mathsf{maj}(T)},$$

- $\triangleright \omega_n$ is any primitive *n*th root of unity,
- $\triangleright \chi^{\lambda}(\sigma)$ is the character of S^{λ} at σ , and

Kraśkiewicz–Weyman's argument hinges on the following key formula:

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r)$$
 (1)

for all $r \in \mathbb{Z}$, where:

$$\mathsf{SYT}(\lambda)^{\mathsf{maj}}(q) \coloneqq \sum_{T \in \mathsf{SYT}(\lambda)} q^{\mathsf{maj}(T)},$$

- $\triangleright \omega_n$ is any primitive *n*th root of unity,
- $\triangleright \chi^{\lambda}(\sigma)$ is the character of S^{λ} at σ , and

Kraśkiewicz–Weyman's argument hinges on the following key formula:

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r)$$
 (1)

for all $r \in \mathbb{Z}$, where:

$$\mathsf{SYT}(\lambda)^{\mathsf{maj}}(q) := \sum_{T \in \mathsf{SYT}(\lambda)} q^{\mathsf{maj}(T)},$$

- $\triangleright \omega_n$ is any primitive *n*th root of unity,
- $\triangleright \chi^{\lambda}(\sigma)$ is the character of S^{λ} at σ , and

Kraśkiewicz–Weyman's argument hinges on the following key formula:

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r) \tag{1}$$

for all $r \in \mathbb{Z}$, where:

$$\mathsf{SYT}(\lambda)^{\mathsf{maj}}(q) \coloneqq \sum_{T \in \mathsf{SYT}(\lambda)} q^{\mathsf{maj}(T)},$$

- $\triangleright \omega_n$ is any primitive *n*th root of unity,
- $\triangleright \chi^{\lambda}(\sigma)$ is the character of S^{λ} at σ , and
- $\sigma_n = (1 \ 2 \ \cdots \ n) \in S_n.$

Words

Definition

► A word is a sequence

$$\mathbf{w} = w_1 w_2 \cdots w_n$$
 s.t. $w_i \in \mathbb{Z}_{\geq 1}$.

- \triangleright W_n is the set of words of length n.
- ▶ The *content* of w is the weak composition $\alpha = (\alpha_1, \alpha_2, ...)$ where $\alpha_j = \#\{i : w_i = j\}$.
- \triangleright W_{\alpha} is the set of words of content \alpha.

For example, $w = 412144 \in W_{(2,1,0,3)} \subset W_6$.

Words

Definition

► A word is a sequence

$$\mathbf{w} = w_1 w_2 \cdots w_n$$
 s.t. $w_i \in \mathbb{Z}_{\geq 1}$.

- \triangleright W_n is the set of words of length n.
- ▶ The *content* of w is the weak composition $\alpha = (\alpha_1, \alpha_2, ...)$ where $\alpha_j = \#\{i : w_i = j\}$.
- $ightharpoonup W_{\alpha}$ is the set of words of content α .

For example, $w = 412144 \in W_{(2,1,0,3)} \subset W_6$.

Words

Definition

► A word is a sequence

$$\mathbf{w} = w_1 w_2 \cdots w_n$$
 s.t. $w_i \in \mathbb{Z}_{\geq 1}$.

- \triangleright W_n is the set of words of length n.
- ▶ The *content* of w is the weak composition $\alpha = (\alpha_1, \alpha_2, ...)$ where $\alpha_j = \#\{i : w_i = j\}$.
- ▶ W_{α} is the set of words of content α .

For example, $w = 412144 \in W_{(2,1,0,3)} \subset W_6$.

Words

Definition

► A word is a sequence

$$\mathbf{w} = w_1 w_2 \cdots w_n$$
 s.t. $w_i \in \mathbb{Z}_{\geq 1}$.

- \triangleright W_n is the set of words of length n.
- ► The *content* of w is the weak composition $\alpha = (\alpha_1, \alpha_2, ...)$ where $\alpha_j = \#\{i : w_i = j\}$.
- $ightharpoonup W_{\alpha}$ is the set of words of content α .

For example, $w = 412144 \in W_{(2,1,0,3)} \subset W_6$.

Words

Definition

► A word is a sequence

$$\mathbf{w} = w_1 w_2 \cdots w_n$$
 s.t. $w_i \in \mathbb{Z}_{\geq 1}$.

- \triangleright W_n is the set of words of length n.
- ► The *content* of w is the weak composition $\alpha = (\alpha_1, \alpha_2, ...)$ where $\alpha_j = \#\{i : w_i = j\}$.
- $ightharpoonup W_{\alpha}$ is the set of words of content α .

For example, $w = 412144 \in W_{(2,1,0,3)} \subset W_6$.

Definition (MacMahon, early 1900's) The descent set of $w \in W_n$ is

$$Des(w) := \{1 \le i \le n-1 : w_i > w_{i+1}\}.$$

The major index is

$$\mathsf{maj}(w) \coloneqq \sum_{i \in \mathsf{Des}(w)} i$$

For example,

$$Des(412144) = Des(4.12.144) = \{1, 3\}$$

 $maj(412144) = 1 + 3 = 4.$

Definition (MacMahon, early 1900's)

The *descent set* of $w \in W_n$ is

$$\mathsf{Des}(w) := \{1 \le i \le n-1 : w_i > w_{i+1}\}.$$

The major index is

$$\mathsf{maj}(w) \coloneqq \sum_{i \in \mathsf{Des}(w)} i.$$

For example,

Des(412144) = Des(4.12.144) =
$$\{1, 3\}$$

maj(412144) = $1 + 3 = 4$.

Definition (MacMahon, early 1900's)

The *descent set* of $w \in W_n$ is

$$Des(w) := \{1 \le i \le n-1 : w_i > w_{i+1}\}.$$

The major index is

$$\mathsf{maj}(w) \coloneqq \sum_{i \in \mathsf{Des}(w)} i.$$

For example,

$$\begin{aligned} \mathsf{Des}(412144) &= \mathsf{Des}(4.12.144) = \{1,3\} \\ \mathsf{maj}(412144) &= 1+3=4. \end{aligned}$$

Theorem (MacMahon [Mac])

The major index generating function on $W_{\alpha} \subset W_n$ is

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) \coloneqq \sum_{w \in \mathsf{W}_{\alpha}} q^{\mathsf{maj}(w)} = \frac{[n]_q!}{\prod_{i \ge 1} [\alpha_i]_q!} = \binom{n}{\alpha}_q$$

where
$$[n]_q := (1 - q^n)/(1 - q) = 1 + q + \dots + q^{n-1}$$
 and $[n]_q! := [n]_q[n-1]_q \cdots [1]_q$.

Theorem (MacMahon [Mac])

The major index generating function on $W_{\alpha} \subset W_n$ is

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) \coloneqq \sum_{w \in \mathsf{W}_{\alpha}} q^{\mathsf{maj}(w)} = \frac{[n]_q!}{\prod_{i \ge 1} [\alpha_i]_q!} = \binom{n}{\alpha}_q$$

where
$$[n]_q := (1-q^n)/(1-q) = 1+q+\cdots+q^{n-1}$$
 and $[n]_q! := [n]_q[n-1]_q\cdots[1]_q$.

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) = \binom{n}{\alpha}_{q}$$

We have
$$\binom{n}{\alpha}_{q=1} = \binom{n}{\alpha} = \# W_{\alpha}$$
.

Exercise

Let ω_d be any primitive dth root of unity. If $d \mid n$,

$$\binom{n}{\alpha}_{q=\omega_d} = \begin{cases} \binom{n/d}{\alpha_1/d,\alpha_2/d,\ldots} & \text{if } d \mid \alpha_1,\alpha_2,\ldots \\ 0 & \text{otherwise}. \end{cases}$$

Question

What does $\binom{n}{\alpha}_{\alpha=\omega_d}$ count?

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) = \binom{n}{\alpha}_{q}$$

We have
$$\binom{n}{\alpha}_{q=1} = \binom{n}{\alpha} = \# W_{\alpha}$$
.

Exercise

Let ω_d be any primitive dth root of unity. If $d \mid n$,

$$\binom{n}{\alpha}_{q=\omega_d} = \begin{cases} \binom{n/d}{\alpha_1/d,\alpha_2/d,\ldots} & \text{if } d \mid \alpha_1,\alpha_2,\ldots \\ 0 & \text{otherwise}. \end{cases}$$

Question

What does $\binom{n}{\alpha}_{q=\omega_d}$ count?

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) = \binom{n}{\alpha}_{q}$$

We have
$$\binom{n}{\alpha}_{q=1} = \binom{n}{\alpha} = \# W_{\alpha}$$
.

Exercise

Let ω_d be any primitive dth root of unity. If $d \mid n$,

$$\binom{n}{\alpha}_{q=\omega_d} = \begin{cases} \binom{n/d}{\alpha_1/d,\alpha_2/d,\dots} & \text{if } d \mid \alpha_1,\alpha_2,\dots\\ 0 & \text{otherwise.} \end{cases}$$

Question What does $\binom{n}{\alpha}_{a=\omega_d}$ count?

$$\mathsf{W}^{\mathsf{maj}}_{\alpha}(q) = \binom{n}{\alpha}_{q}$$

We have $\binom{n}{\alpha}_{q=1} = \binom{n}{\alpha} = \# W_{\alpha}$.

Exercise

Let ω_d be any primitive dth root of unity. If $d \mid n$,

$$\binom{n}{\alpha}_{q=\omega_d} = \begin{cases} \binom{n/d}{\alpha_1/d,\alpha_2/d,\dots} & \text{if } d \mid \alpha_1,\alpha_2,\dots\\ 0 & \text{otherwise.} \end{cases}$$

Question

What does $\binom{n}{\alpha}_{q=\omega_d}$ count?

Definition

Let $\sigma_n := (12 \cdots n) \in S_n$ be the standard *n*-cycle. Let $C_n := \langle \sigma_n \rangle$, which acts on each $W_\alpha \subset W_n$ by rotation.

Exercise

If $\sigma \in C_n$ has order $d \mid n$, then

$$#W_{\alpha}^{\sigma} := \#\{w \in W_{\alpha} : \sigma(w) = w\}$$

$$= \begin{cases} \binom{n/d}{\alpha_1/d, \alpha_2/d, \dots} & \text{if } d \mid \alpha_1, \alpha_2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Corollary

$$W_{\alpha}^{\text{maj}}(\omega_d) = \# W_{\alpha}^{\sigma}$$

Definition

Let $\sigma_n := (12 \cdots n) \in S_n$ be the standard *n*-cycle. Let $C_n := \langle \sigma_n \rangle$, which acts on each $W_\alpha \subset W_n$ by rotation.

Exercise

If $\sigma \in C_n$ has order $d \mid n$, then

$$#W_{\alpha}^{\sigma} := \#\{w \in W_{\alpha} : \sigma(w) = w\}$$

$$= \begin{cases} \binom{n/d}{\alpha_1/d, \alpha_2/d, \dots} & \text{if } d \mid \alpha_1, \alpha_2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Corollary

$$W_{\alpha}^{\text{maj}}(\omega_d) = \# W_{\alpha}^{\sigma}$$

Definition

Let $\sigma_n := (12 \cdots n) \in S_n$ be the standard *n*-cycle. Let $C_n := \langle \sigma_n \rangle$, which acts on each $W_\alpha \subset W_n$ by rotation.

Exercise

If $\sigma \in C_n$ has order $d \mid n$, then

$$#W_{\alpha}^{\sigma} := #\{w \in W_{\alpha} : \sigma(w) = w\}$$

$$= \begin{cases} \binom{n/d}{\alpha_1/d, \alpha_2/d, \dots} & \text{if } d \mid \alpha_1, \alpha_2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Corollary

$$W_{\alpha}^{\text{maj}}(\omega_d) = \# W_{\alpha}^{\sigma}$$

Definition

Let $\sigma_n := (12 \cdots n) \in S_n$ be the standard *n*-cycle. Let $C_n := \langle \sigma_n \rangle$, which acts on each $W_\alpha \subset W_n$ by rotation.

Exercise

If $\sigma \in C_n$ has order $d \mid n$, then

$$\# \mathbf{W}_{\alpha}^{\sigma} := \# \{ w \in \mathbf{W}_{\alpha} : \sigma(w) = w \}
= \begin{cases} \binom{n/d}{\alpha_1/d,\alpha_2/d,\dots} & \text{if } d \mid \alpha_1,\alpha_2,\dots \\ 0 & \text{otherwise.} \end{cases}$$

Corollary

$$W_{\alpha}^{\text{maj}}(\omega_d) = \# W_{\alpha}^{\sigma}$$

Definition

Let $\sigma_n := (12 \cdots n) \in S_n$ be the standard *n*-cycle. Let $C_n := \langle \sigma_n \rangle$, which acts on each $W_\alpha \subset W_n$ by rotation.

Exercise

If $\sigma \in C_n$ has order $d \mid n$, then

$$\# \mathbf{W}_{\alpha}^{\sigma} := \# \{ w \in \mathbf{W}_{\alpha} : \sigma(w) = w \}
= \begin{cases} \binom{n/d}{\alpha_1/d, \alpha_2/d, \dots} & \text{if } d \mid \alpha_1, \alpha_2, \dots \\ 0 & \text{otherwise.} \end{cases}$$

Corollary

$$W_{\alpha}^{\mathsf{maj}}(\omega_d) = \# W_{\alpha}^{\sigma}$$
.

Definition (Reiner-Stanton-White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and suppose $X(q) \in \mathbb{Z}[q]$. The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP) if for all elements $\sigma_d \in C$ of order d,

$$X(\omega_d) = \# X^{\sigma_d}.$$

- ▶ d = 1 gives X(1) = #X, so X(q) is a q-analogue of #X.
- ▶ $\#X^{\sigma_d} = \operatorname{Tr}_{\mathbb{C}\{X\}}(\sigma_d)$, so the CSP says that evaluations of X(q) encode the isomorphism type of the C-action on X.
- ▶ X(q) is uniquely determined modulo $q^n 1$. If deg X(q) < n, the kth coefficient of X(q) is the number of elements of X whose stabilizer has order dividing k.

Definition (Reiner–Stanton–White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and suppose $X(q) \in \mathbb{Z}[q]$. The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP) if for all elements $\sigma_d \in C$ of order d,

$$X(\omega_d) = \# X^{\sigma_d}.$$

- ▶ d = 1 gives X(1) = #X, so X(q) is a q-analogue of #X.
- ▶ $\#X^{\sigma_d} = \operatorname{Tr}_{\mathbb{C}\{X\}}(\sigma_d)$, so the CSP says that evaluations of X(q) encode the isomorphism type of the C-action on X.
- ▶ X(q) is uniquely determined modulo $q^n 1$. If deg X(q) < n, the kth coefficient of X(q) is the number of elements of X whose stabilizer has order dividing k.

Definition (Reiner–Stanton–White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and suppose $X(q) \in \mathbb{Z}[q]$. The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP) if for all elements $\sigma_d \in C$ of order d,

$$X(\omega_d) = \# X^{\sigma_d}.$$

- ▶ d = 1 gives X(1) = #X, so X(q) is a q-analogue of #X.
- ▶ $\#X^{\sigma_d} = \operatorname{Tr}_{\mathbb{C}\{X\}}(\sigma_d)$, so the CSP says that evaluations of X(q) encode the isomorphism type of the C-action on X.
- ▶ X(q) is uniquely determined modulo $q^n 1$. If deg X(q) < n, the kth coefficient of X(q) is the number of elements of X whose stabilizer has order dividing k.

Definition (Reiner–Stanton–White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and suppose $X(q) \in \mathbb{Z}[q]$. The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP) if for all elements $\sigma_d \in C$ of order d,

$$X(\omega_d) = \# X^{\sigma_d}.$$

- ▶ d = 1 gives X(1) = #X, so X(q) is a q-analogue of #X.
- ▶ $\#X^{\sigma_d} = \operatorname{Tr}_{\mathbb{C}\{X\}}(\sigma_d)$, so the CSP says that evaluations of X(q) encode the isomorphism type of the C-action on X.
- ▶ X(q) is uniquely determined modulo $q^n 1$. If deg X(q) < n, the kth coefficient of X(q) is the number of elements of X whose stabilizer has order dividing k.

Definition (Reiner–Stanton–White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and suppose $X(q) \in \mathbb{Z}[q]$. The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP) if for all elements $\sigma_d \in C$ of order d,

$$X(\omega_d) = \# X^{\sigma_d}.$$

- ▶ d = 1 gives X(1) = #X, so X(q) is a q-analogue of #X.
- ▶ $\#X^{\sigma_d} = \operatorname{Tr}_{\mathbb{C}\{X\}}(\sigma_d)$, so the CSP says that evaluations of X(q) encode the isomorphism type of the C-action on X.
- ▶ X(q) is uniquely determined modulo $q^n 1$. If deg X(q) < n, the kth coefficient of X(q) is the number of elements of X whose stabilizer has order dividing k.

Definition (Reiner–Stanton–White [RSW04])

Let X be a finite set on which a cyclic group C of order n acts and suppose $X(q) \in \mathbb{Z}[q]$. The triple (X, C, X(q)) exhibits the cyclic sieving phenomenon (CSP) if for all elements $\sigma_d \in C$ of order d,

$$X(\omega_d) = \# X^{\sigma_d}$$
.

- ▶ d = 1 gives X(1) = #X, so X(q) is a q-analogue of #X.
- ▶ $\#X^{\sigma_d} = \operatorname{Tr}_{\mathbb{C}\{X\}}(\sigma_d)$, so the CSP says that evaluations of X(q) encode the isomorphism type of the C-action on X.
- ▶ X(q) is uniquely determined modulo $q^n 1$. If deg X(q) < n, the kth coefficient of X(q) is the number of elements of X whose stabilizer has order dividing k.

Theorem ([RSW04, Prop. 4.4])

The triple $(W_{\alpha}, C_n, W_{\alpha}^{maj}(q))$ exhibits the CSP.

That is, maj is a "universal" cyclic sieving statistic on words W_n for the S_n -action in the following sense:

Corollary ([BER11, Prop. 3.1])

Let W be a finite set of length n words closed under the S_n -action Then, the triple

$$(W, C_n, W^{maj}(q))$$

exhibits the CSP.

Corollary

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r).$$

Theorem ([RSW04, Prop. 4.4])

The triple $(W_{\alpha}, C_n, W_{\alpha}^{maj}(q))$ exhibits the CSP.

That is, maj is a "universal" cyclic sieving statistic on words W_n for the S_n -action in the following sense:

Let W be a finite set of length n words closed under the S_n -action. Then, the triple

$$(W, C_n, W^{maj}(q))$$

exhibits the CSP.

Corollary

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r).$$

Theorem ([RSW04, Prop. 4.4])

The triple $(W_{\alpha}, C_n, W_{\alpha}^{maj}(q))$ exhibits the CSP.

That is, maj is a "universal" cyclic sieving statistic on words W_n for the S_n -action in the following sense:

Corollary ([BER11, Prop. 3.1])

Let W be a finite set of length n words closed under the S_n -action. Then, the triple

$$(W, C_n, W^{maj}(q))$$

exhibits the CSP.

Corollary

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r).$$

Theorem ([RSW04, Prop. 4.4])

The triple $(W_{\alpha}, C_n, W_{\alpha}^{maj}(q))$ exhibits the CSP.

That is, maj is a "universal" cyclic sieving statistic on words W_n for the S_n -action in the following sense:

Let W be a finite set of length n words closed under the S_n -action. Then, the triple

$$(W, C_n, W^{maj}(q))$$

exhibits the CSP.

Corollary

$$SYT(\lambda)^{maj}(\omega_n^r) = \chi^{\lambda}(\sigma_n^r).$$

To connect cyclic sieving to Thrall's problem, we require some standard GL(V)-representation theory.

Definition

The Schur character of a GL(V)-module E is

$$(\mathsf{ch}\, E)(x_1,\ldots,x_m) \coloneqq \mathsf{Tr}_E(\mathsf{diag}(x_1,\ldots,x_m)),$$

where $m = \dim(V)$.

Definition

Let M be an S_n -module. The Schur-Weyl dual of M is the GL(V)-module

$$E(M) := V^{\otimes n} \otimes_{\mathbb{C}S_n} M$$

Theorem (Schur-Weyl duality)

For any S_n -module M,

$$\lim_{m\to\infty} \operatorname{ch} E(M) = \operatorname{ch}(M).$$

To connect cyclic sieving to Thrall's problem, we require some standard GL(V)-representation theory.

Definition

The Schur character of a GL(V)-module E is

$$(\operatorname{ch} E)(x_1,\ldots,x_m) := \operatorname{Tr}_E(\operatorname{diag}(x_1,\ldots,x_m)),$$

where $m = \dim(V)$.

Definition

Let M be an S_n -module. The Schur-Weyl dual of M is the GL(V)-module

$$E(M) := V^{\otimes n} \otimes_{\mathbb{C}S_n} M$$

Theorem (Schur–Weyl duality)
For any S-module M

$$\lim_{m\to\infty} \operatorname{ch} E(M) = \operatorname{ch}(M).$$

To connect cyclic sieving to Thrall's problem, we require some standard GL(V)-representation theory.

Definition

The *Schur character* of a GL(V)-module E is

$$(\operatorname{ch} E)(x_1,\ldots,x_m) := \operatorname{Tr}_E(\operatorname{diag}(x_1,\ldots,x_m)),$$

where $m = \dim(V)$.

Definition

Let M be an S_n -module. The Schur–Weyl dual of M is the GL(V)-module

$$E(M) := V^{\otimes n} \otimes_{\mathbb{C}S_n} M.$$

Theorem (Schur–Weyl duality) For any S_n -module M,

$$\lim_{m\to\infty} \operatorname{ch} E(M) = \operatorname{ch}(M).$$

To connect cyclic sieving to Thrall's problem, we require some standard GL(V)-representation theory.

Definition

The Schur character of a GL(V)-module E is

$$(\operatorname{ch} E)(x_1,\ldots,x_m) := \operatorname{Tr}_E(\operatorname{diag}(x_1,\ldots,x_m)),$$

where $m = \dim(V)$.

Definition

Let M be an S_n -module. The Schur–Weyl dual of M is the GL(V)-module

$$E(M) := V^{\otimes n} \otimes_{\mathbb{C}S_n} M.$$

Theorem (Schur-Weyl duality)

For any S_n -module M,

$$\lim_{n\to\infty} \operatorname{ch} E(M) = \operatorname{ch}(M).$$

Definition

▶ A *necklace* is a C_n -orbit [w] of a word $w \in W_n$, e.g.

$$[221221] = \{221221, 122122, 212212\}.$$

- ▶ [221] has trivial stabilizer so is *primitive*.
- ▶ [221221] is not primitive and has *frequency* 2 since it's made of two copies of a primitive word.

Definition

▶ A *necklace* is a C_n -orbit [w] of a word $w \in W_n$, e.g.

$$[221221] = \{221221, 122122, 212212\}.$$

- ▶ [221] has trivial stabilizer so is *primitive*.
- ▶ [221221] is not primitive and has *frequency* 2 since it's made of two copies of a primitive word.

Definition

▶ A *necklace* is a C_n -orbit [w] of a word $w \in W_n$, e.g.

$$[221221] = \{221221, 122122, 212212\}.$$

- ▶ [221] has trivial stabilizer so is *primitive*.
- ▶ [221221] is not primitive and has *frequency* 2 since it's made of two copies of a primitive word.

Proposition (Klyachko [Kly74])

There is a weight space basis for $E(\exp(2\pi i/n)\uparrow_{C_n}^{S_n})$ indexed by primitive necklaces of length n words.

Theorem (Marshall Hall [Hal59, Lem. 11.2.1])

 \mathcal{L}_n also has a weight space basis indexed by primitive necklaces

Corollary (Klyachko [Kly74])

The Schur–Weyl dual of $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$ is \mathcal{L}_n .

To apply cyclic sieving, we need generating functions over words not primitive necklaces.

Proposition (Klyachko [Kly74])

There is a weight space basis for $E(\exp(2\pi i/n)\uparrow_{C_n}^{S_n})$ indexed by primitive necklaces of length n words.

Theorem (Marshall Hall [Hal59, Lem. 11.2.1])

 \mathcal{L}_n also has a weight space basis indexed by primitive necklaces.

Corollary (Klyachko [Kly74])

The Schur-Weyl dual of $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$ is \mathcal{L}_n .

To apply cyclic sieving, we need generating functions over words not primitive necklaces.

Proposition (Klyachko [Kly74])

There is a weight space basis for $E(\exp(2\pi i/n)\uparrow_{C_n}^{S_n})$ indexed by primitive necklaces of length n words.

Theorem (Marshall Hall [Hal59, Lem. 11.2.1])

 \mathcal{L}_n also has a weight space basis indexed by primitive necklaces.

Corollary (Klyachko [Kly74])

The Schur-Weyl dual of $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$ is \mathcal{L}_n .

To apply cyclic sieving, we need generating functions over words, not primitive necklaces.

Proposition (Klyachko [Kly74])

There is a weight space basis for $E(\exp(2\pi i/n)\uparrow_{C_n}^{S_n})$ indexed by primitive necklaces of length n words.

Theorem (Marshall Hall [Hal59, Lem. 11.2.1])

 \mathcal{L}_n also has a weight space basis indexed by primitive necklaces.

Corollary (Klyachko [Kly74])

The Schur–Weyl dual of $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$ is \mathcal{L}_n .

To apply cyclic sieving, we need generating functions over words, not primitive necklaces.

Definition

Let

 $NFD_{n,r} := \{\underline{n}$ ecklaces of length n words with frequency \underline{d} ividing $r\}$.

Hence $NFD_{n,1}$ consists of primitive necklaces

Proposition ([AS18a])

There is a weight space basis for $E(\exp(2\pi i r/n)\uparrow_{C_n}^{S_n})$ indexed by NFD_{n,r}.

Corollary

We have

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = \sum_{r=1}^{n} q^{r} \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}).$$

However, as r varies, the NFD_n, are not disjoint.

Definition

Let

 $NFD_{n,r} := \{\underline{n} \text{ ecklaces of length } n \text{ words with } \underline{f} \text{ requency } \underline{d} \text{ ividing } r\}.$

Hence $NFD_{n,1}$ consists of primitive necklaces.

Proposition ([AS18a])

There is a weight space basis for $E(\exp(2\pi i r/n)\uparrow_{C_n}^{S_n})$ indexed by NFD_{n,r}.

Corollary

We have

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = \sum_{r=1}^{n} q^{r} \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}).$$

However, as r varies, the NFD_n, are not disjoint.

Definition

Let

 $NFD_{n,r} := \{ \text{necklaces of length } n \text{ words with frequency dividing } r \}.$

Hence $NFD_{n,1}$ consists of primitive necklaces.

Proposition ([AS18a])

There is a weight space basis for $E(\exp(2\pi i r/n)\uparrow_{C_n}^{S_n})$ indexed by NFD_{n,r}.

Corollary
We have

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = \sum_{r=1}^{n} q^{r} \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}).$$

However, as r varies, the NFD_{n,r} are not disjoint.

Definition

Let

 $NFD_{n,r} := \{\underline{n}$ ecklaces of length n words with frequency \underline{d} ividing $r\}$.

Hence $NFD_{n,1}$ consists of primitive necklaces.

Proposition ([AS18a])

There is a weight space basis for $E(\exp(2\pi i r/n)\uparrow_{C_n}^{S_n})$ indexed by NFD_{n,r}.

Corollary

We have

$$\sum_{r=1}^n q^r \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_n}^{S_n} = \sum_{r=1}^n q^r \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}).$$

However, as r varies, the NFD_{n,r} are not disjoint

Definition

Let

 $NFD_{n,r} := \{\underline{n}\text{ ecklaces of length } n \text{ words with } \underline{f}\text{ requency } \underline{d}\text{ ividing } r\}.$

Hence $NFD_{n,1}$ consists of primitive necklaces.

Proposition ([AS18a])

There is a weight space basis for $E(\exp(2\pi i r/n)\uparrow_{C_n}^{S_n})$ indexed by NFD_{n,r}.

Corollary

We have

$$\sum_{r=1}^n q^r \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_n}^{S_n} = \sum_{r=1}^n q^r \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}).$$

However, as r varies, the NFD_{n,r} are not disjoint.

To fix this, we use the following.

Definition ([AS18b])

The statistic flex: $W_n \to \mathbb{Z}_{\geq 0}$ is flex(w) := freq(w) · lex(w) where lex(w) is the position at which w appears in the lexicographic order of its rotations, starting at 1.

Example

flex(221221) = $2 \cdot 3 = 6$ since 221221 is the concatenation of 2 copies of the primitive word 221 and 221221 is third in lexicographic order amongst its 3 cyclic rotations.

Lemma

We have

$$\sum_{r=1}^{n} q^r \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}) = \operatorname{W}_{n}^{\operatorname{cont;flex}}(\mathbf{x};q).$$

To fix this, we use the following.

Definition ([AS18b])

The statistic flex: $W_n \to \mathbb{Z}_{\geq 0}$ is flex(w) := freq(w) · lex(w) where lex(w) is the position at which w appears in the lexicographic order of its rotations, starting at 1.

Example

flex(221221) = $2 \cdot 3 = 6$ since 221221 is the concatenation of 2 copies of the primitive word 221 and 221221 is third in lexicographic order amongst its 3 cyclic rotations.

Lemma

$$\sum_{r=1}^{n} q^r \operatorname{NFD}_{n,r}^{\operatorname{cont}}(\mathbf{x}) = \operatorname{W}_{n}^{\operatorname{cont;flex}}(\mathbf{x};q).$$

To fix this, we use the following.

Definition ([AS18b])

The statistic flex: $W_n \to \mathbb{Z}_{\geq 0}$ is flex(w) := freq(w) · lex(w) where lex(w) is the position at which w appears in the lexicographic order of its rotations, starting at 1.

Example

flex(221221) = $2 \cdot 3 = 6$ since 221221 is the concatenation of 2 copies of the primitive word 221 and 221221 is third in lexicographic order amongst its 3 cyclic rotations.

Lemma

We have

$$\sum_{r=1}^{n} q^r \, \mathsf{NFD}^{\mathsf{cont}}_{n,r}(\mathbf{x}) = \mathsf{W}^{\mathsf{cont};\mathsf{flex}}_n(\mathbf{x};q).$$

Flex is a "universal" cyclic sieving statistic on words W_n for C_n -actions in the following sense:

Lemma ([AS18b])

Let W be a finite set of length n words closed under the C_n -action, where C_n acts by cyclic rotations. Then, the triple $(W, C_n, W^{flex}(q))$ exhibits the CSP.

Corollary

We have

$$W_n^{\text{cont;flex}}(q) = W_n^{\text{cont;maj}_n}(q)$$

where $1 \leq maj_n \leq n$ is maj modulo n.

Flex is a "universal" cyclic sieving statistic on words W_n for C_n -actions in the following sense:

Lemma ([AS18b])

Let W be a finite set of length n words closed under the C_n -action, where C_n acts by cyclic rotations. Then, the triple $(W, C_n, W^{flex}(q))$ exhibits the CSP.

Corollary

We have

$$W_n^{\text{cont;flex}}(q) = W_n^{\text{cont;maj}_n}(q)$$

where $1 \leq \text{maj}_n \leq n$ is maj modulo n.

We finally have the following *remarkably direct, largely bijective proof* of Kraśkiewicz–Weyman's result using cyclic sieving.

- 1. Using Schur-Weyl duality and Hall's basis, ch \mathcal{L}_n can be replaced by ch $\exp(2\pi i/n)\uparrow_C^{S_n}$.
- 2. Using the generalized Klyachko basis and flex,

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = W_{n}^{\operatorname{cont;flex}}(\mathbf{x}; q).$$

3. Using universal cyclic sieving on words for S_{n-} or C_{n-} actions

$$W_n^{\text{cont;flex}}(\mathbf{x};q) = W_n^{\text{cont;maj}_n}(\mathbf{x};q).$$

$$\mathsf{W}^{\mathsf{cont};\mathsf{maj}_n}_n(\mathsf{x};q) = \sum_{\substack{\lambda \vdash n \\ r \vdash 1}} \mathsf{a}_{\lambda,r} q^r \mathsf{s}_{\lambda}(\mathsf{x}).$$

We finally have the following *remarkably direct, largely bijective proof* of Kraśkiewicz–Weyman's result using cyclic sieving.

- 1. Using Schur-Weyl duality and Hall's basis, ch \mathcal{L}_n can be replaced by ch $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$.
- 2. Using the generalized Klyachko basis and flex,

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = W_{n}^{\operatorname{cont;flex}}(\mathbf{x}; q).$$

3. Using universal cyclic sieving on words for S_{n-} or C_{n-} actions,

$$W_n^{\text{cont;flex}}(\mathbf{x};q) = W_n^{\text{cont;maj}_n}(\mathbf{x};q).$$

$$W_n^{\text{cont;maj}_n}(\mathbf{x};q) = \sum_{\substack{\lambda \vdash n \\ r \in [n]}} a_{\lambda,r} q^r s_{\lambda}(\mathbf{x}). \qquad \Box$$

We finally have the following *remarkably direct, largely bijective proof* of Kraśkiewicz–Weyman's result using cyclic sieving.

- 1. Using Schur-Weyl duality and Hall's basis, ch \mathcal{L}_n can be replaced by ch $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$.
- 2. Using the generalized Klyachko basis and flex,

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = W_{n}^{\operatorname{cont;flex}}(\mathbf{x}; q).$$

3. Using universal cyclic sieving on words for S_{n^-} or C_{n^-} actions $W_n^{\text{cont;flex}}(\mathbf{x}; a) = W_n^{\text{cont;maj}_n}(\mathbf{x}; a).$

$$W_n^{\text{cont;maj}_n}(\mathbf{x};q) = \sum_{\substack{\lambda \vdash n \\ r \in [n]}} a_{\lambda,r} q^r s_{\lambda}(\mathbf{x}). \qquad \Box$$

We finally have the following *remarkably direct, largely bijective proof* of Kraśkiewicz–Weyman's result using cyclic sieving.

- 1. Using Schur-Weyl duality and Hall's basis, ch \mathcal{L}_n can be replaced by ch $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$.
- 2. Using the generalized Klyachko basis and flex,

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = W_{n}^{\operatorname{cont;flex}}(\mathbf{x}; q).$$

3. Using *universal cyclic sieving* on words for S_{n-} or C_{n-} actions,

$$W_n^{\text{cont;flex}}(\mathbf{x};q) = W_n^{\text{cont;maj}_n}(\mathbf{x};q).$$

$$W_n^{\operatorname{cont;maj}_n}(\mathbf{x};q) = \sum_{\substack{\lambda \vdash n \\ r \in [n]}} a_{\lambda,r} q^r s_{\lambda}(\mathbf{x}).$$

We finally have the following *remarkably direct, largely bijective proof* of Kraśkiewicz–Weyman's result using cyclic sieving.

- 1. Using Schur-Weyl duality and Hall's basis, ch \mathcal{L}_n can be replaced by ch $\exp(2\pi i/n)\uparrow_{C_n}^{S_n}$.
- 2. Using the generalized Klyachko basis and flex,

$$\sum_{r=1}^{n} q^{r} \operatorname{ch} \exp(2\pi i r/n) \uparrow_{C_{n}}^{S_{n}} = W_{n}^{\operatorname{cont;flex}}(\mathbf{x}; q).$$

3. Using universal cyclic sieving on words for S_{n-} or C_{n-} actions,

$$W_n^{\text{cont;flex}}(\mathbf{x};q) = W_n^{\text{cont;maj}_n}(\mathbf{x};q).$$

$$\mathsf{W}^{\mathsf{cont};\mathsf{maj}_n}_n(\mathsf{x};q) = \sum_{\substack{\lambda \vdash n \ r \in [n]}} \mathsf{a}_{\lambda,r} q^r \mathsf{s}_\lambda(\mathsf{x}).$$

There are multiple published proofs of Kraśkiewicz–Weyman's theorem. However, none of them give a bijective explanation for the following symmetry:

Corollary

Let $\lambda \vdash n$. Then $\#\{T \in \mathsf{SYT}(\lambda) : \mathsf{maj}(T) \equiv_n r\}$ depends only on λ and $\mathsf{gcd}(n,r)$.

Open Problem

Find a bijective proof of the above symmetry.

Open Problem

Find a content-preserving bijection $\Phi \colon W_n \to W_n$ such that $\mathsf{maj}_n(w) = \mathsf{flex}(\Phi(w))$.

$$\sum_{\lambda \vdash n} a_{\lambda,r} s_{\lambda}(\mathbf{x}) = \sum_{\lambda \vdash n} a_{\lambda,\gcd(n,r)} s_{\lambda}(\mathbf{x}).$$

There are multiple published proofs of Kraśkiewicz–Weyman's theorem. However, none of them give a bijective explanation for the following symmetry:

Corollary

Let $\lambda \vdash n$. Then $\#\{T \in \mathsf{SYT}(\lambda) : \mathsf{maj}(T) \equiv_n r\}$ depends only on λ and $\mathsf{gcd}(n,r)$.

Open Problem

Find a *bijective proof* of the above symmetry.

Open Problem

Find a content-preserving bijection $\Phi \colon W_n \to W_n$ such that $\operatorname{maj}_n(w) = \operatorname{flex}(\Phi(w))$.

$$\sum_{\lambda \vdash n} a_{\lambda,r} s_{\lambda}(\mathbf{x}) = \sum_{\lambda \vdash n} a_{\lambda,\gcd(n,r)} s_{\lambda}(\mathbf{x}).$$

There are multiple published proofs of Kraśkiewicz–Weyman's theorem. However, none of them give a bijective explanation for the following symmetry:

Corollary

Let $\lambda \vdash n$. Then $\#\{T \in \mathsf{SYT}(\lambda) : \mathsf{maj}(T) \equiv_n r\}$ depends only on λ and $\mathsf{gcd}(n,r)$.

Open Problem

Find a bijective proof of the above symmetry.

Open Problem

Find a content-preserving bijection $\Phi \colon W_n \to W_n$ such that $\operatorname{maj}_n(w) = \operatorname{flex}(\Phi(w))$.

$$\sum_{\lambda \vdash n} a_{\lambda,r} s_{\lambda}(\mathbf{x}) = \sum_{\lambda \vdash n} a_{\lambda, \gcd(n,r)} s_{\lambda}(\mathbf{x}).$$

There are multiple published proofs of Kraśkiewicz–Weyman's theorem. However, none of them give a bijective explanation for the following symmetry:

Corollary

Let $\lambda \vdash n$. Then $\#\{T \in \mathsf{SYT}(\lambda) : \mathsf{maj}(T) \equiv_n r\}$ depends only on λ and $\mathsf{gcd}(n,r)$.

Open Problem

Find a bijective proof of the above symmetry.

Open Problem

Find a content-preserving bijection $\Phi \colon W_n \to W_n$ such that $\operatorname{maj}_n(w) = \operatorname{flex}(\Phi(w))$.

$$\sum_{\lambda \vdash n} a_{\lambda,r} s_{\lambda}(\mathbf{x}) = \sum_{\lambda \vdash n} a_{\lambda,\gcd(n,r)} s_{\lambda}(\mathbf{x}).$$

In [AS18b], we prove a *refinement* of the $(W_{\alpha}, C_n, W_{\alpha}^{maj}(q))$ CSP involving the *cyclic descent type* of a word.

Question

Is there a refinement of Kraśkiewicz-Weyman's Schur expansion involving cyclic descent types?

The recent work of Adin, Elizalde, Huang, Reiner, Roichman on cyclic descent sets for standard tableaux may be relevant.

In [AS18b], we prove a *refinement* of the $(W_{\alpha}, C_n, W_{\alpha}^{\mathsf{maj}}(q))$ CSP involving the *cyclic descent type* of a word.

Question

Is there a refinement of Kraśkiewicz–Weyman's Schur expansion involving cyclic descent types?

The recent work of Adin, Elizalde, Huang, Reiner, Roichman on cyclic descent sets for standard tableaux may be relevant.

In [AS18b], we prove a *refinement* of the $(W_{\alpha}, C_n, W_{\alpha}^{\mathsf{maj}}(q))$ CSP involving the *cyclic descent type* of a word.

Question

Is there a refinement of Kraśkiewicz–Weyman's Schur expansion involving cyclic descent types?

The recent work of Adin, Elizalde, Huang, Reiner, Roichman on cyclic descent sets for standard tableaux may be relevant.

Cyclic group branching rules

Stembridge generalized Kraśkiewicz–Weyman's result to describe all branching rules for any $\langle \sigma \rangle \hookrightarrow S_n$ where σ is of cycle type ν and order ℓ :

Theorem (Stembridge [Ste89])

$$\sum_{r=1}^\ell q^r \operatorname{ch}(\exp(2\pi i r/\ell) \!\!\uparrow_{\langle \sigma \rangle}^{S_n}) = \sum_{\substack{\lambda \vdash n \\ T \in \operatorname{\mathsf{SYT}}(\lambda)}} q^{\operatorname{\mathsf{maj}}_\nu(T)} s_\lambda(\mathbf{x})$$

where maj_{ν} is a generalization of maj_n.

We give a cyclic sieving-based proof of Stembridge's result. The first step is a natural generalization of Klyachko's basis:

Proposition

$$\operatorname{ch} \exp(2\pi i r/\ell) \uparrow_{\langle \sigma \rangle}^{S_n} = \operatorname{OFD}_{n,r}^{\operatorname{cont}}(\mathbf{x})$$

where $\mathsf{OFD}_{\mathsf{n},\mathsf{r}}$ is the set of $\langle \sigma \rangle$ -orbits with frequency (stabilizer order) dividing r .

See the paper for more.

Cyclic group branching rules

Stembridge generalized Kraśkiewicz–Weyman's result to describe all branching rules for any $\langle \sigma \rangle \hookrightarrow S_n$ where σ is of cycle type ν and order ℓ :

Theorem (Stembridge [Ste89])

$$\sum_{r=1}^{\ell} q^r \operatorname{ch}(\exp(2\pi i r/\ell) \uparrow_{\langle \sigma \rangle}^{S_n}) = \sum_{\substack{\lambda \vdash n \\ T \in \operatorname{\mathsf{SYT}}(\lambda)}} q^{\operatorname{\mathsf{maj}}_{\nu}(T)} s_{\lambda}(\mathbf{x})$$

where maj_{ν} is a generalization of maj_{n} .

We give a cyclic sieving-based proof of Stembridge's result. The first step is a natural generalization of Klyachko's basis:

Proposition

$$\cosh \exp(2\pi i r/\ell) \uparrow_{\langle \sigma \rangle}^{S_n} = OFD_{n,r}^{cont}(\mathbf{x})$$

where $\mathsf{OFD}_{n,r}$ is the set of $\langle \sigma \rangle$ -orbits with frequency (stabilizer order) dividing r.

See the paper for more.

Recall that $\mathcal{L}_{(a^b)} = \operatorname{Sym}^b \mathcal{L}_a$. Consequently,

$$\operatorname{ch} \mathcal{L}_{(a^b)} = h_b[\mathcal{L}_a].$$

Thus Thrall's problem is an instance of a *plethysm problem*. Such problems are notoriously difficult.

The preceding arguments and results strongly suggest the need to consider Thrall's problem in the larger context of *general branching rules*.

Recall that $\mathcal{L}_{(a^b)} = \operatorname{Sym}^b \mathcal{L}_a$. Consequently,

$$\operatorname{ch} \mathcal{L}_{(a^b)} = h_b[\mathcal{L}_a].$$

Thus Thrall's problem is an instance of a *plethysm problem*. Such problems are notoriously difficult.

The preceding arguments and results strongly suggest the need to consider Thrall's problem in the larger context of *general branching rules*.

One may show that $\mathcal{L}_{(a^b)}$ is the Schur–Weyl dual of a certain induced one-dimensional representation $\chi^{r,1} \uparrow_{C_a \wr S_b}^{S_{ab}}$ of the wreath product $C_a \wr S_b$. Here $C_a \wr S_b$ can be thought of as the subgroup of permutations on ab letters which permute the b size-a intervals in [ab] amongst themselves and cyclically rotate each size-a interval independently.

Schocker [Sch03] gave a formula for the Schur expansion of ch $\mathcal{L}_{(a^b)}$, though it involves many divisions and subtractions in general. We generalized Schocker's result to all induced one-dimensional representations of $C_a \wr S_b$ using cyclic sieving

One may show that $\mathcal{L}_{(a^b)}$ is the Schur–Weyl dual of a certain induced one-dimensional representation $\chi^{r,1} \uparrow_{C_a \wr S_b}^{S_{ab}}$ of the *wreath* product $C_a \wr S_b$. Here $C_a \wr S_b$ can be thought of as the subgroup of permutations on ab letters which permute the b size-a intervals in [ab] amongst themselves and cyclically rotate each size-a interval independently.

Schocker [Sch03] gave a formula for the Schur expansion of ch $\mathcal{L}_{(a^b)}$, though it involves many divisions and subtractions in general. We generalized Schocker's result to all induced one-dimensional representations of $C_a \wr S_b$ using cyclic sieving

One may show that $\mathcal{L}_{(a^b)}$ is the Schur–Weyl dual of a certain induced one-dimensional representation $\chi^{r,1} \uparrow_{C_a \wr S_b}^{S_{ab}}$ of the *wreath* product $C_a \wr S_b$. Here $C_a \wr S_b$ can be thought of as the subgroup of permutations on ab letters which permute the b size-a intervals in [ab] amongst themselves and cyclically rotate each size-a interval independently.

Schocker [Sch03] gave a formula for the Schur expansion of ch $\mathcal{L}_{(a^b)}$, though it involves many divisions and subtractions in general. We generalized Schocker's result to all induced one-dimensional representations of $C_a \wr S_b$ using cyclic sieving.

Theorem (See [Sch03, Thm. 3.1])

For all $a, b \ge 1$ and r = 1, ..., a, we have

$$\operatorname{ch} \mathcal{L}_{(\mathsf{a}^b)}^{r,1} = \sum_{\lambda \vdash \mathsf{a}b} \left(\sum_{\nu \vdash b} \frac{1}{\mathsf{z}_\nu} \sum_{\tau \mid r * \nu} \mu_\tau(\nu, r * \nu) \mathsf{a}_{\lambda, \tau}^{\mathsf{a} * \nu} \right) \mathsf{s}_\lambda(\mathsf{x}) \qquad \text{and} \quad \mathsf{b}_\lambda(\mathsf{x})$$

$$\operatorname{ch} \mathcal{L}_{(\boldsymbol{a}^b)}^{r,\epsilon} = \sum_{\lambda \vdash \boldsymbol{a} b} \left(\sum_{\nu \vdash b} \frac{(-1)^{b-\ell(\nu)}}{z_{\nu}} \sum_{\tau \mid r*\nu} \mu_{\tau}(\nu, r*\nu) \mathbf{a}_{\lambda, \tau}^{\boldsymbol{a}*\nu} \right) s_{\lambda}(\mathbf{x}),$$

where $maj_{a*\nu}$ is a variation on maj,

$$\mathbf{a}_{\lambda,\tau}^{a*
u} \coloneqq \#\{Q \in \mathsf{SYT}(\lambda) : \mathsf{maj}_{a*
u}(Q) = \tau\},$$

and $\mu_f(d,e)$ is a generalization of the classical Möbius function.

In our approach, the *subtractions* and *divisions* arise from the underlying combinatorics using *Möbius inversion* and *Burnside's lemma*, respectively.

Theorem (See [Sch03, Thm. 3.1])

For all a, b > 1 and r = 1, ..., a, we have

$$\operatorname{ch} \mathcal{L}_{(\mathsf{a}^b)}^{r,1} = \sum_{\lambda \vdash \mathsf{a}b} \left(\sum_{\nu \vdash b} \frac{1}{z_{\nu}} \sum_{\tau \mid r * \nu} \mu_{\tau}(\nu, r * \nu) \mathbf{a}_{\lambda, \tau}^{\mathsf{a} * \nu} \right) s_{\lambda}(\mathbf{x}) \qquad \text{and}$$

$$\operatorname{ch} \mathcal{L}^{r,\epsilon}_{(m{a}^b)} = \sum_{\lambda \vdash m{a} b} \left(\sum_{
u \vdash b} rac{(-1)^{b-\ell(
u)}}{z_
u} \sum_{ au \mid r*
u} \mu_ au(
u, r*
u) m{a}^{m{a}*
u}_{\lambda, au}
ight) s_\lambda(\mathbf{x}),$$

where $maj_{a*\nu}$ is a variation on maj,

$$\mathbf{a}_{\lambda,\tau}^{a*\nu} \coloneqq \#\{Q \in \mathsf{SYT}(\lambda) : \mathsf{maj}_{a*\nu}(Q) = \tau\},$$

and $\mu_f(d, e)$ is a generalization of the classical Möbius function.

In our approach, the *subtractions and divisions* arise from the underlying combinatorics using *Möbius inversion and Burnside's lemma*, respectively.

A new approach

Our generalization of Schocker's formula involves considering only the one-dimensional representations of $C_a \wr S_b$, which may explain its failure to be cancellation-free.

The earlier statistics flex, maj_n , and maj_ν gave monomial expansions of the branching rules in question as generating functions on words. We have identified the monomial expansion for $C_a \wr S_b \hookrightarrow S_{ab}$ as a statistic generating function as follows.

Theorem

Fix integers $a, b \ge 1$. We have

$$\begin{split} \sum_{\underline{\lambda}} \dim S^{\underline{\lambda}} \cdot \operatorname{ch} \left(S^{\underline{\lambda}} \uparrow^{S_{ab}}_{C_a \wr S_b} \right) q^{\underline{\lambda}} &= \operatorname{W}^{\operatorname{cont}, \operatorname{flex}^b_a}_{ab}(\mathbf{x}; q) \\ &= \operatorname{W}^{\operatorname{cont}, \operatorname{maj}^b_a}_{ab}(\mathbf{x}; q) \end{split}$$

where the sum is over all a-tuples $\underline{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(a)})$ of partitions with $\sum_{r=1}^{a} |\lambda^{(r)}| = b$ and the $\underline{q}^{\underline{\lambda}}$ are independent indeterminates.

A new approach

Our generalization of Schocker's formula involves considering only the one-dimensional representations of $C_a \wr S_b$, which may explain its failure to be cancellation-free.

The earlier statistics flex, maj_n , and maj_ν gave *monomial expansions* of the branching rules in question as generating functions on words. We have identified the monomial expansion for $C_a \wr S_b \hookrightarrow S_{ab}$ as a statistic generating function as follows.

Theorem

Fix integers $a, b \ge 1$. We have

$$\begin{split} \sum_{\underline{\lambda}} \dim S^{\underline{\lambda}} \cdot \operatorname{ch} \left(S^{\underline{\lambda}} \uparrow^{S_{ab}}_{C_a \wr S_b} \right) q^{\underline{\lambda}} &= \mathsf{W}^{\mathsf{cont}, \mathsf{flex}^b_a}_{ab}(\mathbf{x}; q) \\ &= \mathsf{W}^{\mathsf{cont}, \mathsf{maj}^b_a}_{ab}(\mathbf{x}; q) \end{split}$$

where the sum is over all a-tuples $\underline{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(a)})$ of partitions with $\sum_{r=1}^{a} |\lambda^{(r)}| = b$ and the $\underline{q}^{\underline{\lambda}}$ are independent indeterminates.

A new approach

Our generalization of Schocker's formula involves considering only the one-dimensional representations of $C_a \wr S_b$, which may explain its failure to be cancellation-free.

The earlier statistics flex, maj_n, and maj_{\nu\} gave monomial expansions of the branching rules in question as generating functions on words. We have identified the monomial expansion for $C_a \wr S_b \hookrightarrow S_{ab}$ as a statistic generating function as follows.

Theorem

Fix integers a, b > 1. We have

$$\begin{split} \sum_{\underline{\lambda}} \dim S^{\underline{\lambda}} \cdot \operatorname{ch} \left(S^{\underline{\lambda}} \uparrow^{S_{ab}}_{C_a \wr S_b} \right) q^{\underline{\lambda}} &= \mathsf{W}^{\mathsf{cont}, \mathsf{flex}^b_a}_{ab}(\mathbf{x}; q) \\ &= \mathsf{W}^{\mathsf{cont}, \mathsf{maj}^b_a}_{ab}(\mathbf{x}; q) \end{split}$$

where the sum is over all a-tuples $\underline{\lambda} = (\lambda^{(1)}, \dots, \lambda^{(a)})$ of partitions with $\sum_{r=1}^{a} |\lambda^{(r)}| = b$ and the $\underline{q}^{\underline{\lambda}}$ are independent indeterminates.

The statistics $flex_a^b$ and maj_a^b are somewhat involved. For $flex_a^b$:

- 1. Write $w \in W_{ab}$ in the form $w = w^1 \cdots w^b$ where $w_j \in W_a$.
- 2. Let $w^{(r)}$ denote the *subword* of w whose letters are those $w^j \in W_a$ such that $flex(w^j) = r$.
- Totally order W_a lexicographically, so that RSK is well-defined for words with letters from W_a.
- 4. Set

$$\mathsf{flex}_{\mathsf{a}}^{\mathsf{b}}(w) := (\mathsf{sh}(w^{(1)}), \dots, \mathsf{sh}(w^{(a)}))$$

where sh denotes the shape under RSK.

The statistics $flex_a^b$ and maj_a^b are somewhat involved. For $flex_a^b$:

- 1. Write $w \in W_{ab}$ in the form $w = w^1 \cdots w^b$ where $w_j \in W_a$.
- 2. Let $w^{(r)}$ denote the *subword* of w whose letters are those $w^j \in W_a$ such that $flex(w^j) = r$.
- Totally order W_a lexicographically, so that RSK is well-defined for words with letters from W_a.
- 4. Set

$$\mathsf{flex}_{\mathsf{a}}^{\mathsf{b}}(w) := (\mathsf{sh}(w^{(1)}), \dots, \mathsf{sh}(w^{(a)}))$$

where sh denotes the shape under RSK.

The statistics $flex_a^b$ and maj_a^b are somewhat involved. For $flex_a^b$:

- 1. Write $w \in W_{ab}$ in the form $w = w^1 \cdots w^b$ where $w_j \in W_a$.
- 2. Let $w^{(r)}$ denote the *subword* of w whose letters are those $w^j \in W_a$ such that $flex(w^j) = r$.
- Totally order W_a lexicographically, so that RSK is well-defined for words with letters from W_a.
- 4. Set

$$\mathsf{flex}_{\mathsf{a}}^{\mathsf{b}}(w) := (\mathsf{sh}(w^{(1)}), \dots, \mathsf{sh}(w^{(a)}))$$

where sh denotes the shape under RSK.

The statistics $flex_a^b$ and maj_a^b are somewhat involved. For $flex_a^b$:

- 1. Write $w \in W_{ab}$ in the form $w = w^1 \cdots w^b$ where $w_j \in W_a$.
- 2. Let $w^{(r)}$ denote the *subword* of w whose letters are those $w^j \in W_a$ such that $flex(w^j) = r$.
- Totally order W_a lexicographically, so that RSK is well-defined for words with letters from W_a.
- 4. Set

$$\mathsf{flex}_{a}^{b}(w) := (\mathsf{sh}(w^{(1)}), \dots, \mathsf{sh}(w^{(a)}))$$

where sh denotes the shape under RSK

The statistics flex_a^b and maj_a^b are somewhat involved. For flex_a^b :

- 1. Write $w \in W_{ab}$ in the form $w = w^1 \cdots w^b$ where $w_j \in W_a$.
- 2. Let $w^{(r)}$ denote the *subword* of w whose letters are those $w^j \in W_a$ such that $flex(w^j) = r$.
- 3. Totally order W_a lexicographically, so that RSK is well-defined for words with letters from W_a.
- 4. Set

$$flex_a^b(w) := (sh(w^{(1)}), \dots, sh(w^{(a)}))$$

where sh denotes the shape under RSK.

The statistics flex_a^b and maj_a^b are somewhat involved. For flex_a^b :

- 1. Write $w \in W_{ab}$ in the form $w = w^1 \cdots w^b$ where $w_j \in W_a$.
- 2. Let $w^{(r)}$ denote the *subword* of w whose letters are those $w^j \in W_a$ such that $flex(w^j) = r$.
- 3. Totally order W_a lexicographically, so that RSK is well-defined for words with letters from W_a .
- 4. Set

$$flex_a^b(w) := (sh(w^{(1)}), \dots, sh(w^{(a)}))$$

where sh denotes the shape under RSK.

Previously, we were able to simply use RSK to go from the monomial to the Schur basis, since maj_{ν} depends only on Q(w). However, flex_a^b and maj_a^b do not have the corresponding property.

Open Problem

Fix $a, b \ge 1$. Find a statistic

$$\mathsf{mash}_a^b \colon \mathsf{W}_{ab} \to \{a\text{-tuples of partitions with total size } b\}$$

- (i) For all $\alpha \vDash ab$, maj $_a^b$ (or equivalently flex $_a^b$) and mash $_a^b$ are equidistributed on W_{α} .
- (ii) If $v, w \in W_{ab}$ satisfy Q(v) = Q(w), then $\operatorname{\mathsf{mash}}_a^b(v) = \operatorname{\mathsf{mash}}_a^b(w)$.

Previously, we were able to simply use RSK to go from the monomial to the Schur basis, since maj_{ν} depends only on Q(w). However, flex_a^b and maj_a^b do not have the corresponding property.

Open Problem

Fix $a, b \ge 1$. Find a statistic

 $\operatorname{\mathsf{mash}}^b_a\colon \operatorname{\mathsf{W}}_{ab} \to \{a\text{-tuples of partitions with total size }b\}$

- (i) For all $\alpha \vDash ab$, maj $_a^b$ (or equivalently flex $_a^b$) and mash $_a^b$ are equidistributed on W_{α} .
- (ii) If $v, w \in W_{ab}$ satisfy Q(v) = Q(w), then $\operatorname{\mathsf{mash}}_a^b(v) = \operatorname{\mathsf{mash}}_a^b(w)$.

Previously, we were able to simply use RSK to go from the monomial to the Schur basis, since maj_{ν} depends only on Q(w). However, flex_a^b and maj_a^b do not have the corresponding property.

Open Problem

Fix $a, b \ge 1$. Find a statistic

 $\operatorname{\mathsf{mash}}^b_a\colon \operatorname{\mathsf{W}}_{ab} \to \{a\text{-tuples of partitions with total size }b\}$

- (i) For all $\alpha \vDash ab$, maj_a^b (or equivalently flex_a^b) and mash_a^b are equidistributed on W_{α} .
- (ii) If $v, w \in W_{ab}$ satisfy Q(v) = Q(w), then $\operatorname{\mathsf{mash}}_a^b(v) = \operatorname{\mathsf{mash}}_a^b(w)$.

Previously, we were able to simply use RSK to go from the monomial to the Schur basis, since maj_{ν} depends only on Q(w). However, flex_a^b and maj_a^b do not have the corresponding property.

Open Problem

Fix $a, b \ge 1$. Find a statistic

 $\operatorname{\mathsf{mash}}^b_a\colon \operatorname{\mathsf{W}}_{ab} \to \{a\text{-tuples of partitions with total size }b\}$

- (i) For all $\alpha \vDash ab$, maj_a^b (or equivalently flex_a^b) and mash_a^b are equidistributed on W_{α} .
- (ii) If $v, w \in W_{ab}$ satisfy Q(v) = Q(w), then $\operatorname{mash}_{a}^{b}(v) = \operatorname{mash}_{a}^{b}(w)$.

Finding such a statistic mash_a^b would determine all branching rules for $C_a \wr S_b \hookrightarrow S_{ab}$, in particularly solving Thrall's problem, as follows.

Corollary

Suppose mash a satisfies Properties (i) and (ii). Then

$$\mathsf{ch}(S^{\underline{\lambda}}\!\!\!\uparrow^{S_{ab}}_{C_a\wr S_b}) = \sum_{\nu\vdash ab} \frac{\#\{Q\in\mathsf{SYT}(\nu):\mathsf{mash}^b_a(Q)=\underline{\lambda}\}}{\mathsf{dim}(S^{\underline{\lambda}})} s_\nu(\mathbf{x}),$$

where $\operatorname{mash}_a^b(Q) := \operatorname{mash}_a^b(w)$ for any $w \in W_{ab}$ with Q(w) = Q.

When a=1 and b=n, $\operatorname{maj}_1^n(w)$ essentially reduces to $\operatorname{sh}(w)$, the shape of w under RSK. When a=n and b=1, $\operatorname{maj}_n^1(w)$ essentially reduces to $\operatorname{maj}_n(w)$. Both of these satisfy (i) and (ii). In this sense mash_a^b , interpolates between the major index maj_n and the shape under RSK, hence the name.

Question

Could a useful notion of "group sieving" for the wreath products $C_a \wr S_b$ be missing?

When a=1 and b=n, $\operatorname{maj}_1^n(w)$ essentially reduces to $\operatorname{sh}(w)$, the shape of w under RSK. When a=n and b=1, $\operatorname{maj}_n^1(w)$ essentially reduces to $\operatorname{maj}_n(w)$. Both of these satisfy (i) and (ii). In this sense mash_a^b , interpolates between the major index maj_n and the shape under RSK, hence the name.

Question

Could a useful notion of "group sieving" for the wreath products $C_a \wr S_b$ be missing?

When a=1 and b=n, $\mathrm{maj}_1^n(w)$ essentially reduces to $\mathrm{sh}(w)$, the shape of w under RSK. When a=n and b=1, $\mathrm{maj}_n^1(w)$ essentially reduces to $\mathrm{maj}_n(w)$. Both of these satisfy (i) and (ii). In this sense mash_a^b , interpolates between the major index maj_n and the shape under RSK, hence the name.

Question

Could a useful notion of "group sieving" for the wreath products $C_a \wr S_b$ be missing?

THANKS!

References I

Connor Ahlbach and Joshua P. Swanson. Cyclic sieving, necklaces, and branching rules related to Thrall's problem.

Electron. J. Combin., 25(4):Paper 4.42, 38, 2018.

Connor Ahlbach and Joshua P. Swanson.

Refined cyclic sieving on words for the major index statistic.

European Journal of Combinatorics, 73:37 – 60, 2018.

Andrew Berget, Sen-Peng Eu, and Victor Reiner. Constructions for cyclic sieving phenomena. SIAM J. Discrete Math., 25(3):1297–1314, 2011.

Marshall Hall, Jr.

The Theory of Groups.

The Macmillan Co., New York, N.Y., 1959.

References II

A. A. Klyachko.

Lie elements in the tensor algebra.

Siberian Mathematical Journal, 15(6):914-920, 1974.

Witold Kraśkiewicz and Jerzy Weyman.

Algebra of coinvariants and the action of a Coxeter element. Bayreuth. Math. Schr., (63):265-284, 2001.

P. A. MacMahon.

Two applications of general theorems in combinatory analysis:

(1) to the theory of inversions of permutations; (2) to the ascertainment of the numbers of terms in the development of a determinant which has amongst its elements an arbitrary number of zeros.

Proc. London Math. Soc., S2-15(1):314.

References III

Victor Reiner, Dennis Stanton, and Dennis White.

The cyclic sieving phenomenon.

J. Combin. Theory Ser. A, 108(1):17-50, 2004.

Manfred Schocker.

Multiplicities of higher Lie characters.

J. Aust. Math. Soc., 75(1):9–21, 2003.

John R. Stembridge.

On the eigenvalues of representations of reflection groups and wreath products.

Pacific J. Math., 140(2):353-396, 1989.

R. M. Thrall.

On symmetrized Kronecker powers and the structure of the free Lie ring.

Amer. J. Math., 64:371-388, 1942.