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Theorem (de Moivre-Laplace: the O.G. C.L.T.)

Let X, be the number of heads after n fair coin tosses. Then for
t € R,

_ X — /2 L e
"mngoplmgt]_\/ﬂ/—oo dx =P[N(0,1) < t],

i.e. X, is asymptotically normal.

Note that size: 2" — Z>o has the same distribution as X, and
generating function

Z q5|ze 1+CI)

SC[n]

with all real roots.
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Given a statistic stat: W — Zxq, form the generating function

Wstat(q) — Z qstat(w) _ Z quk‘
weWw k>0
Question

» What do the ¢'s look like for your favorite statistic?

» What's the distribution of stat where W is sampled uniformly?
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Classical asymptotics

Theorem (Bender '73, Harper '67)

Suppose X1, Xy, ... are random variables where E[q*"] € R>¢[q]
has all real roots. Then X, is asymptotically normal if and only if

on — 00.
Example
If X, is size on 21", then E[g*"] = £(1+q)" and 02 = n/4 — co.
Example

» Number of blocks on set partitions of [n] (i.e. Stirling
numbers of the second kind).

» Number of descents in permutations of S, (Eulerian numbers,
Eulerian statistics).
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Roots of unity

But wait! My favorite statistic is inv on permutations!
Definition

Forw=w; ---w, €5, let

inv(w) = #{i <j:w > wj}.

Theorem (Classical)

Sw(a) =Y ¢™") =[nlg! = [nlgln — 1q---[]q
WES,
where [clg =1+ q+ -+ ¢ L.
Since [c]q = (1 — g°)/(1 — q), the roots are all roots of unity and
are almost never real.
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Unit roots

Theorem (Hwang—Zacharovas '15)

Suppose X1, Xy, ... have E[q¥"] € R>o[q] with all roots on the
unit circle {z € C : |z| = 1}. Then X, is asymptotically normal if
and only if kg /0% — 0.

Example
For inv on S, it turns out that
36 31+ 31n+ 21n° + 6n°

4
—_> ~ —1 0
w4l = e T a(n—1)(2n £ 5)2 /n=0,

so inv is asymptotically normal (as are all Mahonian statistics).
(This is usually attributed to Feller. It is also implicit in older
probability literature on 7-tests.)
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Real roots vs. unit roots
The real-rooted case is very nice:
» No internal zeros (ck—1, ck+1 # 0 = cx # 0).
Unimodal coefficients (cop < c1 <+ < ¢m > Cmy1 > )

v

» Log-concave coefficients (CE > Ck—1Ck+1)

v

Ultra log-concave coefficients: Newton's inequalities say

2
<Ck> S k-1 Ck+1.
n - n n
(k) (e"1) ()
The unit root case is more varied:
» Can have internal zeros, though they usually don't (see
arXiv:1809.07386)
» Need not be unimodal, though they often are
(e.g. g-binomials)
» Even less likely to be log-concave or ultra log-concave (though
related y-expansions are both!)
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Cyclotomic generating functions

Definition (Billey—Konvalinka-S.)

A cyclotomic generating function is a polynomial of the form

_ozBH[bk]qEZ q]

for multisets {ai1,...,am} and {b1,..., by} of positive integers
and a, 8 € Zzo.

Example

» invonS,

» sum on ([Z]).

» area on Dyck paths
» maj on SYT())

> rank on SSYT<p(A)
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Cyclotomic generating functions

Cyclotomic generating functions capture the “combinatorially
interesting” case of unit-root generating functions in the following
sense:

Lemma (Kronecker, 1857)

If f € Z[q] is monic and all complex roots z of f have |z| <1,
then all roots are roots of unity or 0.

They are also a particularly nice family of random variables. For
instance, the characteristic functions are piecewise log-concave,
and log E[e®*"] always converges in a complex neighborhood of 0

of radius at least 274/1/((2) —1/4 ~ 3.76. . ..
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Cyclotomic generating functions

Lemma
For f(q) € Z>olq], TFAE:

(i) (Rational form.) f is a cyclotomic generating function, i.e.

q) = ag’ - HT* qﬁ'.Hll—
i

Jj=1

aj

—_—

(ii) (Cyclotomic form.) f is a product of cyclotomic polynomials
and aq®.

(iii) (Complex form.) The complex roots of f are each either a
root of unity or zero.

Moreover, the factorization in (i) is unique if the multisets are
disjoint and f # 0.
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Question
Are the possible limit laws for cyclotomic generating function
coefficients more varied than real-rooted ones?

Yes!
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maj on SYT(X) limit law classification

Definition
Let aft(A\) == [A| — max{A1, A} and let

IHm =U[0,1] + --- +U[0,1]
be the Mth Irwin—Hall distribution.

Theorem (Billey—Konvalinka—S. '19)
Let X\ X be a sequence of partitions. Let X, denote the
major index statistic on standard tableaux of shape A" sampled
uniformly, and let X = (X, — pn)/on. Then X} converges in
distribution if and only if

(i) aft(A(") = oo; or

(i) M| = 0o and aft(A(M) = M < oo; or

(iii) the distribution of X, [maj] is eventually constant.
The limit law is N'(0,1) in case (i), ZH}, in case (ii), and discrete
in case (iii).
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Question
How do you compute ¢ and k4 for a cyclotomic generating
function? ...what is k47

Definition
Let
g = E[X] and ag = E[(X — p)9].

The moment-generating function is
Z:u’d dl = E[etX] - | |W5tat( )

The cumulants kg of X are defined by

o0 d
t — tXy _ 1 stat
ana = logE[e""] = log — Wi w lOgZ“ddr
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Cumulants

=t = ¢
> rd gy =log ) pa .
d=1 d=0

Cumulants are like moments, but are better in almost every way:
(1) (Familiar values) k1 = p, ko = 02, k3 = Q3.

(2) (Shift invariance) k% = k5 € for all d > 2 and c € R.

(3) (Additivity) 3 ™ = kF + kY if X and Y are independent.
(4) (Homogeneity) k5% = cx.

(5)

5) (Polynomiality) p's, a's, k's are all polynomials in each other.
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Example
Let X = N(u,0). Then

2
E[etN(Mva)] = exp(ut + %t2).

Hence

0.2
log BletV ()] = e + 712

SO leu,ﬁzzaz,ndzofordz&

Contrast with
0 d odd
a4 =
I o9(d — 1)1l d even.

44 is even messier!
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Theorem (Billey—Konvalinka—S. '19, Hwang—Zacharovas '15,
Chen-Wang—-Wang '08, ...)
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B8 =0,
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Cumulants of cyclotomic generating functions

Theorem (Billey—Konvalinka—S. '19, Hwang—Zacharovas '15,
Chen-Wang—-Wang '08, ...)

Let B =1,B; = 1/27 B, = 1/67 B3 =0,B; = —1/30,... be the
Bernoulli numbers. Given a cyclotomic generating function with

B =0,

k=1
o
By (S,
Qd = Z s N\l Zak_bk
n M= M \k=
even parts
o\ m
! B, Z P
Hd = Z 2 bW a k
Aen A= M \k=1
even parts

or singletons
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maj on SYT () asymptotics

» Our classification of limit laws for maj on SYT(\) involves
direct combinatorial estimates of differences

S 1d? = Y cen hd: they are ©(aft(\)n9).

» Consequently, x5 = O(aft(\)1~9/2) — 0 if aft(\) — oo and
d > 2, which agrees with mg[(o’l) in the limit. Now apply the

method of moments.

» Asymptotic normality is “obvious” when Z}’led dominates,
though for small aft(\), there is enormous cancellation
resulting in degenerate cases with Irwin—Hall distributions.
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Further limit laws

» For size on PP(a x b x ¢), we get asymptotic normality if and
only if median{a, b,c} — oo. If ab converges and ¢ — oo,
the limit law is ZH},.

» For rank on SSYT<p,(A), we get asymptotic normality in
many cases, ZH, in others, and D* where

D = Z U[X,',Xj]
1<i<j<m

in still others. No complete classification.

» For maj on linear extensions of labeled forests, we get
asymptotic normality “generically”, but we also get D* where

D .= iU[—t,', t,']
i=1

where t; > tp > --- >0 and Z?il t,-2 < oo. Classification is
“mostly” complete.
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Further questions

Question

So far, the space of possible continuous limits for cyclotomic
generating functions is parameterized by “¢2”, namely the space of
square-summable countable decreasing sequences

1=t >t >--->0, together with a “point at infinity” for
N(0,1). Are there more?

Question
What are necessary and sufficient conditions on the multisets
{a1,...,am} and {b1,..., by} for the resulting rational function

to be a cyclotomic generating function? Can we efficiently
enumerate them or sample from them?

Example

For maj on SYT(), the fact that the corresponding rational
function is in Z[q] can be interpreted in terms of {-quotients of A.
Why are the coefficients positive?
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Further questions

Many avenues for further work:

>

Analyze coefficients of related generating functions
(e.g. principal specializations of Schubert polynomials).

Bivariate analogues (e.g. inv, maj joint distributions)
Local limit theorems (e.g. for maj on SYT())).

Enumerative properties of the set of cyclotomic generating
functions (e.g. limiting unimodal fraction?).

Connections to regular sequences and Hilbert series of
complete intersections in weighted projective space
(e.g. which such Hilbert series are possible?).



Thanks!

THANKS!



