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Classical asymptotics

Theorem (de Moivre–Laplace: the O.G. C.L.T.)

Let Xn be the number of heads after n fair coin tosses.

Then for
t ∈ R,

lim
n→∞

P

[
Xn − n/2√

n/4
≤ t

]
=

1√
2π

∫ t

−∞
e−x

2
dx = P[N (0, 1) ≤ t],

i.e. Xn is asymptotically normal.

Note that size : 2[n] → Z≥0 has the same distribution as Xn and
generating function ∑

S⊂[n]

qsize(S) = (1 + q)n

with all real roots.
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Classical asymptotics

Given a statistic stat : W → Z≥0, form the generating function

W stat(q) :=
∑
w∈W

qstat(w) =
∑
k≥0

ckq
k .

Question

I What do the ck ’s look like for your favorite statistic?

I What’s the distribution of stat where W is sampled uniformly?
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Classical asymptotics

Theorem (Bender ’73, Harper ’67)

Suppose X1,X2, . . . are random variables where E[qXn ] ∈ R≥0[q]
has all real roots.

Then Xn is asymptotically normal if and only if
σn →∞.

Example

If Xn is size on 2[n], then E[qXn ] = 1
2n (1 + q)n and σ2n = n/4→∞.

Example

I Number of blocks on set partitions of [n] (i.e. Stirling
numbers of the second kind).

I Number of descents in permutations of Sn (Eulerian numbers,
Eulerian statistics).
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Roots of unity

But wait! My favorite statistic is inv on permutations!

Definition
For w = w1 · · ·wn ∈ Sn, let

inv(w) := #{i < j : wi > wj}.

Theorem (Classical)

S inv
n (q) =

∑
w∈Sn

qinv(w) = [n]q! = [n]q[n − 1]q · · · [1]q

where [c]q := 1 + q + · · ·+ qc−1.

Since [c]q = (1− qc)/(1− q), the roots are all roots of unity and
are almost never real.



Roots of unity

But wait! My favorite statistic is inv on permutations!

Definition
For w = w1 · · ·wn ∈ Sn, let

inv(w) := #{i < j : wi > wj}.

Theorem (Classical)

S inv
n (q) =

∑
w∈Sn

qinv(w) = [n]q! = [n]q[n − 1]q · · · [1]q

where [c]q := 1 + q + · · ·+ qc−1.

Since [c]q = (1− qc)/(1− q), the roots are all roots of unity and
are almost never real.



Roots of unity

But wait! My favorite statistic is inv on permutations!

Definition
For w = w1 · · ·wn ∈ Sn, let

inv(w) := #{i < j : wi > wj}.

Theorem (Classical)

S inv
n (q) =

∑
w∈Sn

qinv(w) = [n]q! = [n]q[n − 1]q · · · [1]q

where [c]q := 1 + q + · · ·+ qc−1.

Since [c]q = (1− qc)/(1− q), the roots are all roots of unity and
are almost never real.



Roots of unity

But wait! My favorite statistic is inv on permutations!

Definition
For w = w1 · · ·wn ∈ Sn, let

inv(w) := #{i < j : wi > wj}.

Theorem (Classical)

S inv
n (q) =

∑
w∈Sn

qinv(w) = [n]q! = [n]q[n − 1]q · · · [1]q

where [c]q := 1 + q + · · ·+ qc−1.

Since [c]q = (1− qc)/(1− q), the roots are all roots of unity and
are almost never real.



Unit roots

Theorem (Hwang–Zacharovas ’15)

Suppose X1,X2, . . . have E[qXn ] ∈ R≥0[q] with all roots on the
unit circle {z ∈ C : |z | = 1}.

Then Xn is asymptotically normal if
and only if κ4/σ

4 → 0.

Example

For inv on Sn, it turns out that

κ4/σ
4 = −36

25

31 + 31n + 21n2 + 6n3

n(n − 1)(2n + 5)2
≈ −1/n→ 0,

so inv is asymptotically normal (as are all Mahonian statistics).
(This is usually attributed to Feller. It is also implicit in older
probability literature on τ -tests.)
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Real roots vs. unit roots
The real-rooted case is very nice:

I No internal zeros (ck−1, ck+1 6= 0⇒ ck 6= 0).

I Unimodal coefficients (c0 ≤ c1 ≤ · · · ≤ cm ≥ cm+1 ≥ · · · )
I Log-concave coefficients (c2k ≥ ck−1ck+1)

I Ultra log-concave coefficients: Newton’s inequalities say(
ck(n
k

))2

≥ ck−1( n
k−1
) ck+1( n

k+1

) .
The unit root case is more varied:

I Can have internal zeros, though they usually don’t (see
arXiv:1809.07386)

I Need not be unimodal, though they often are
(e.g. q-binomials)

I Even less likely to be log-concave or ultra log-concave (though
related γ-expansions are both!)
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Cyclotomic generating functions

Definition (Billey–Konvalinka–S.)

A cyclotomic generating function is a polynomial of the form

f (q) = αqβ
m∏

k=1

[ak ]q
[bk ]q

∈ Z≥0[q]

for multisets {a1, . . . , am} and {b1, . . . , bm} of positive integers
and α, β ∈ Z≥0.

Example

I inv on Sn
I sum on

([n]
k

)
.

I area on Dyck paths

I maj on SYT(λ)

I rank on SSYT≤m(λ)
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Cyclotomic generating functions

Cyclotomic generating functions capture the “combinatorially
interesting” case of unit-root generating functions in the following
sense:

Lemma (Kronecker, 1857)

If f ∈ Z[q] is monic and all complex roots z of f have |z | ≤ 1,
then all roots are roots of unity or 0.

They are also a particularly nice family of random variables. For
instance, the characteristic functions are piecewise log-concave,
and logE[e itX

∗
] always converges in a complex neighborhood of 0

of radius at least 2π
√

1/ζ(2)− 1/4 ≈ 3.76 . . ..
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Cyclotomic generating functions

Lemma
For f (q) ∈ Z≥0[q], TFAE:

(i) (Rational form.) f is a cyclotomic generating function, i.e.

f (q) = αqβ ·
m∏
j=1

[aj ]q
[bj ]q

= αqβ ·
m∏
j=1

1− qaj

1− qbj
.

(ii) (Cyclotomic form.) f is a product of cyclotomic polynomials
and αqβ.

(iii) (Complex form.) The complex roots of f are each either a
root of unity or zero.

Moreover, the factorization in (i) is unique if the multisets are
disjoint and f 6= 0.
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maj on SYT(λ) limit law classification

Definition
Let aft(λ) := |λ| −max{λ1, λ′1} and let

IHM := U [0, 1] + · · ·+ U [0, 1]

be the Mth Irwin–Hall distribution.

Theorem (Billey–Konvalinka–S. ’19)

Let λ(1), λ(2), . . . be a sequence of partitions. Let Xn denote the
major index statistic on standard tableaux of shape λ(n) sampled
uniformly, and let X ∗n := (Xn − µn)/σn. Then X ∗n converges in
distribution if and only if

(i) aft(λ(n))→∞; or

(ii) |λ(n)| → ∞ and aft(λ(n))→ M <∞; or

(iii) the distribution of X ∗
λ(n)

[maj] is eventually constant.

The limit law is N (0, 1) in case (i), IH∗M in case (ii), and discrete
in case (iii).
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Cumulants

Question
How do you compute σ and κ4 for a cyclotomic generating
function?

...what is κ4?

Definition
Let

µd := E[X d ] and αd := E[(X − µ)d ].

The moment-generating function is

∞∑
d=0

µd
td

d!
= E[etX ] =

1

|W |
W stat(et).

The cumulants κd of X are defined by

∞∑
d=1

κd
td

d!
:= logE[etX ] = log

1

|W |
W stat(et) = log

∞∑
d=0

µd
td

d!
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Cumulants

∞∑
d=1

κd
td

d!
= log

∞∑
d=0

µd
td

d!
.

Cumulants are like moments, but are better in almost every way:

(1) (Familiar values) κ1 = µ, κ2 = σ2, κ3 = α3.

(2) (Shift invariance) κXd = κX−cd for all d ≥ 2 and c ∈ R.

(3) (Additivity) κX+Y
d = κXd + κYd if X and Y are independent.

(4) (Homogeneity) κcXd = cdκXd .

(5) (Polynomiality) µ’s, α’s, κ’s are all polynomials in each other.
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Cumulants

Example

Let X = N (µ, σ). Then

E[etN (µ,σ)] = exp(µt +
σ2

2
t2).

Hence

logE[etN (µ,σ)] = µt +
σ2

2
t2,

so κ1 = µ, κ2 = σ2, κd = 0 for d ≥ 3.
Contrast with

αd =

{
0 d odd

σd(d − 1)!! d even.

µd is even messier!
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Cumulants of cyclotomic generating functions

Theorem (Billey–Konvalinka–S. ’19, Hwang–Zacharovas ’15,
Chen–Wang–Wang ’08, ...)

Let B0 = 1,B1 = 1/2,B2 = 1/6,B3 = 0,B4 = −1/30, . . . be the
Bernoulli numbers. Given a cyclotomic generating function with
β = 0,

κd =
Bd

d

m∑
k=1

(adk − bdk )

αd =
∑
λ`n

even parts

d!

zλ

`(λ)∏
i=1

Bλi
λi !

(
m∑

k=1

aλik − bλik

)

µd =
∑
λ`n

even parts
or singletons

d!

zλ

`(λ)∏
i=1

Bλi
λi !

(
m∑

k=1

aλik − bλik

)
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maj on SYT(λ) asymptotics

I Our classification of limit laws for maj on SYT(λ) involves
direct combinatorial estimates of differences∑n

j=1 j
d −

∑
c∈λ h

d
c : they are Θ(aft(λ)nd).

I Consequently, κX
∗

d = Θ(aft(λ)1−d/2)→ 0 if aft(λ)→∞ and

d > 2, which agrees with κ
N (0,1)
d in the limit. Now apply the

method of moments.

I Asymptotic normality is “obvious” when
∑n

j=1 j
d dominates,

though for small aft(λ), there is enormous cancellation
resulting in degenerate cases with Irwin–Hall distributions.
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Further limit laws

I For size on PP(a× b × c), we get asymptotic normality if and
only if median{a, b, c} → ∞.

If ab converges and c →∞,
the limit law is IH∗ab.

I For rank on SSYT≤m(λ), we get asymptotic normality in
many cases, IHM in others, and D∗ where

D :=
∑

1≤i<j≤m
U [xi , xj ]

in still others. No complete classification.

I For maj on linear extensions of labeled forests, we get
asymptotic normality “generically”, but we also get D∗ where

D :=
∞∑
i=1

U [−ti , ti ]

where t1 ≥ t2 ≥ · · · ≥ 0 and
∑∞

i=1 t
2
i <∞. Classification is

“mostly” complete.
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Further questions

Question
So far, the space of possible continuous limits for cyclotomic

generating functions is parameterized by “ ˜̀2”, namely the space of
square-summable countable decreasing sequences
1 = t1 ≥ t2 ≥ · · · ≥ 0, together with a “point at infinity” for
N (0, 1). Are there more?

Question
What are necessary and sufficient conditions on the multisets
{a1, . . . , am} and {b1, . . . , bm} for the resulting rational function
to be a cyclotomic generating function? Can we efficiently
enumerate them or sample from them?

Example

For maj on SYT(λ), the fact that the corresponding rational
function is in Z[q] can be interpreted in terms of `-quotients of λ.
Why are the coefficients positive?
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Further questions

Many avenues for further work:

I Analyze coefficients of related generating functions
(e.g. principal specializations of Schubert polynomials).

I Bivariate analogues (e.g. inv, maj joint distributions)

I Local limit theorems (e.g. for maj on SYT(λ)).

I Enumerative properties of the set of cyclotomic generating
functions (e.g. limiting unimodal fraction?).

I Connections to regular sequences and Hilbert series of
complete intersections in weighted projective space
(e.g. which such Hilbert series are possible?).
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Thanks!

T HANKS!


