
MAJOR INDEX STATISTICS: CYCLIC SIEVING, BRANCHING RULES, AND

ASYMPTOTICS

JOSHUA P. SWANSON

Abstract. These are lecture notes for the author’s thesis defense talk given in the University of Washington

combinatorics seminar on May 23rd, 2018.

Contents

1. Introduction 1

2. Background 1

3. Modular Major Index Estimates 2

4. Non-Modular Major Index Estimates 4

References 5

1. Introduction

My thesis has five content chapters:

(1) Refined Cyclic Sieving on Words for the Major Index Statistic
(2) Cyclic Sieving, Branching Rules, and Higher Lie Modules
(3) On the Existence of Tableaux with Given Modular Major Index
(4) Distribution of major index for standard tableaux and asymptotic normality
(5) On a theorem of Baxter and Zeilberger via a result of Roselle

It’s also 210 pages long and covers a range of topics including word, necklace, and tableaux combinatorics;
cyclic sieving; symmetric group and general linear group representation theory; higher Lie modules; weak
convergence of random variables; cumulants; and estimates of characteristic functions. Bowing to the pressures
of time, today I’ll summarize pieces of two of the chapters.

2. Background

Definition 2.1. For a permutation w = w1w2 · · ·wn in the symmetric group Sn, the major index of w is
the sum of all i such that wi > wi+1.

Example 2.2.

• maj(id) = maj(1 2 · · · n) = 0.
• maj(w0) = maj(n · · · 2 1) = 1 + 2 + · · ·+ (n− 1) =

(
n
2

)
.
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Remark 2.3. Baxter and Zeilberger call this the “second most important permutation statistic” (after
inversion number). In my opinion, the major index has richer connections to representation theory and
asymptotic combinatorics than the inversion number.

Definition 2.4. Recall that the conjugacy classes of Sn are determined by cycle types. Cycle types correspond
to (integer) partitions of n, which are weakly decreasing sequences λ ` n of non-negative integers summing to
n.

By elementary character theory, complex irreducible representations of a finite group G are in general
equinumerous with the conjugacy classes of G.

Definition 2.5. The cyclic group Cn = 〈σn〉 of order n has irreducibles

χr : Cn → C×

χr(σn) := ωrn

where ωn is a primitive nth root of unity.

Remark 2.6. When G = Sn, something amazing happens: the irreducibles Sλ are called Specht modules
and are canonically indexed by partitions λ ` n. (Indeed, this construction can be categorified using the
notion of Schur functors, which are endofunctors of Vec interpolating between the exterior and symmetric
power functors.)

Definition 2.7. The Young diagram of λ is the northwest justified grouping of square cells where the ith
row from the top has length λi.

Definition 2.8. A standard tableaux of shape λ ` n is a filling of the Young diagram of λ with 1, 2, . . . , n
(each used once) which strictly increases along rows and columns. Write SYT(λ) for the set of standard
Young tableaux of shape λ.

Definition 2.9. The descent set of T ∈ SYT(λ) is the set of all i such that i + 1 appears in T in a row
strictly below the row of i.

Definition 2.10. The major index of T is the sum of the descents.

In fact, SYT(λ) indexes a basis for Sλ. The number fλ := # SYT(λ) = dimSλ is usually very large. (It’s
typically thought of as n!ε for some ε.)

Example 2.11. There are two standard tableaux of shape λ = (2, 1), namely T = 12/3 and T = 13/2. The
descent set of 1267/35/48 is {2, 3, 7} and major index 2 + 3 + 7 = 12.

3. Modular Major Index Estimates

The corresponding paper has been published [Swa18]. Sundaram’s paper [Sun18] has also now been
published.

Question 3.1 (Sundaram). Let Sn act by conjugation C-linearly on permutations of cycle type µ. For which
µ does every Sn-irreducible appear? (When is µ a global class?)

Conjecture 3.2 (Sundaram). Take n ≥ 8. µ is a global class if and only if µ has at least 2 parts and all
parts are odd and distinct.

Remark 3.3. She proved the conjecture contingent on a classification of which irreducibles appear when
µ = (n) (all but (n − 1, 1) and (2, 2n−2) when n is odd, and all but (n − 1, 1) and (1n) when n is even).
The first part of the talk describes asymptotics strong enough to answer this question and, hence, prove
Sundaram’s conjecture. The second part describes related work on major index statistic asymptotics.

Remark 3.4. When µ = (n), the module in question is 1↑Sn

Cn
where Cn = 〈(1 2 · · · n)〉. We consider more

generally χr↑Sn

Cn
, as above.
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Definition 3.5. Set

aλ,r := 〈Sλ, χr↑Sn

Cn
〉 = 〈Sλ↓Sn

Cn
, χr〉.

Sundaram was interested in the r = 0 case.

Theorem 3.6 (Kraskiewicz–Weyman). Let λ ` n. Then

aλ,r = #{T ∈ SYT(λ) : maj(T ) ≡n r}.

Remark 3.7. Klyachko classified when aλ,1 = 0 by finding faithful representations of Cn in Sλ, though this
argument doesn’t generalize to other r in any obvious way. Marianne Johnson gave a combinatorial argument
re-proving Klyachko’s result from the K-W theorem, though it relied on the representation-theoretic result
that aλ,r depends only on λ and gcd(r, n) and was relatively ad-hoc.

We give the following stronger result, answering Sundaram’s conjecture in the affirmative and hence
completing her classification of the global conjugacy classes of Sn.

Theorem 3.8 ([Swa18, Thm. 1.4]). Let λ ` n and r ∈ Z. Then aλ,r 6= 0 except possibly when λ =
(2, 2), (2, 2, 2), (3, 3) or when λ is in one of the four infinite families (1n), (n), (2, 1n−1), (n− 1, 1).

Moreover, the argument is more general, more conceptual, and offers vastly more precise estimates of each
aλ,r than in earlier work. The key idea is obtaining the following type of bound.

Theorem 3.9 (S.). Let λ ` n. Independent of r, we have∣∣∣∣aλ,rfλ
− 1

n

∣∣∣∣ ≤ 2n3/2√
fλ

.

Remark 3.10. Intuitively, since fλ is typically enormous compared to n3/2, this says that the “maj mod
n” statistic on SYT(λ) is approximately uniformly distributed, with aλ,r ≈ fλ/n independent of r. Some
ingredients in the proof are as follows.

Theorem 3.11 (Foulkes). We have

chχr↑Sn

Cn
=

1

n

∑
λ`n

c`(r)p(`n/`)

where

c`(r) := sum of rth powers of primitive `th roots of unity

( = µ(`/(`, r))φ(`)/φ(`/(`, r)) )

is a so-called Ramanujan sum.

Corollary 3.12. For λ ` n, let fλ := # SYT(λ) = χλ(1n). Then

aλ,r
fλ

=
1

n
+

1

n

∑
`|n
` 6=1

χλ(`n/`)

fλ
c`(r).

Theorem 3.13 (Fomin–Lulov). Let λ ` n = `s. Then

|χλ(`s)| ≤ s!`s

(n!)1/`
(fλ)1/`.

Remark 3.14. The theorem follows from combining the corollary, the Fomin–Lulov bound, and Stirling’s
approximation (carefully). To actually show aλ,r 6= 0 using this sort of estimate requires lower bounds of
the form fλ ≥ nd for fixed d. This is accomplished by introducing an “opposite hook product” inequality
(discovered independently by Morales–Pak–Panova) and using a certain recursive procedure to reduce to
the case of hook shapes. The relevant estimates are strong enough when n ≥ 34, with the remainder being
brute-forced on computer. Since only partitions with “very few” standard tableaux are left to check, the
brute-force check can be done using even a naive implementation in under a minute.
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4. Non-Modular Major Index Estimates

This work is joint with Sara Billey and Matjaž Konvalinka. The corresponding paper is in preparation
(should be on arXiv very soon). Let

bλ,i := #{T ∈ SYT(λ) : maj(T ) = i}.
These constants appear in a number of contexts: the graded Frobenius series of the type A coinvariant
algebra; stable principal specializations of Schur functions; and coefficients of certain degree polynomials for
GLn(Fq)-representations. We won’t describe these connections further here.

Question 4.1.

(1) What does the distribution of maj on SYT(λ) look like?
(2) When is bλ,i = 0?

We’ll begin by describing an answer to the first question.

Definition 4.2. Given a random variable X with mean µ and standard deviation σ, define the corresponding
normalized random variable by

X∗ :=
X − µ
σ

.

X∗ has mean 0 and variance 1.

Definition 4.3. Let X1, X2, . . . be a sequence of real-valued random variables. Suppose X∗N has cumulative
distribution function FN (t) := P[X∗N ≤ t]. We say the sequence X1, X2, . . . is asymptotically normal if for all
t ∈ R,

lim
N→∞

FN (t) = F (t)

where F (t) is the CDF of the standard normal distribution.

Definition 4.4. Define a statistic

aft(λ) := |λ| −max{λ1, λ̃1}
= (if λ is at least as wide as it is tall) number of cells not in the largest row.

Theorem 4.5 (Billey–Konvalinka–S.). Suppose λ(1), λ(2), . . . is a sequence of partitions. Let XN be the
major index statistic on SYT(λ(N)). Then, the sequence X1, X2, . . . is asymptotically normal if and only if

lim
N→∞

aft(λ(N)) =∞.

As an example, the theorem recovers the following earlier result by letting λ(N) := (N,N), since then
aft(λ(N)) = 2N −N = N →∞.

Corollary 4.6 (Chen–Wang–Wang). The coefficients of the q-Catalan numbers 1
[N+1]q

(
2N
N

)
q

are asymptoti-

cally normal.

Remark 4.7. The proof uses Stanley’s q-hook length formula, a beautifully explicit cumulant formula, and
direct combinatorial growth rate estimates of normalized cumulants. For instance, we show for fixed d and
uniformly for all λ that ∣∣∣κλd∗∣∣∣ = Θ(aft(λ)1−d/2).

Remark 4.8. Actually, our result is more general and I’ve given the above simplified version in the interest
of time. Our full result allows one to use “block diagonal” skew partitions. Special cases then include maj
on words of content α. This allows us to simultaneously generalize a series of earlier asymptotic normality
results by Canfield–Janson–Zeilberger, Diaconis, Mann–Whitney, and Feller.

Remark 4.9. One may ask what happens when aft(λ(N)) does not tend to ∞. We have the following result
which, together with the above result, completely classifies all possible limiting normalized distributions of
maj on SYT(λ) for any sequence of λ’s (or, more generally, block diagonal skew partitions).
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Theorem 4.10 (Billey–Konvalinka–S.). In the notation above, suppose aft(λ(N)) = k for all N and |λ(N)| →
∞. Then X1, X2, . . . is asymptotically distributed according to X∗ where X =

∑k
i=1 U [0, 1].

These are reasonably satisfying answers to question (1). As for (2), we have the following.

Theorem 4.11 (Billey–Konvalinka–S.). The generating function
∑
T∈SYT(λ) q

maj(T ) has “no internal zeros,”

except for two particular exceptions when λ is a rectangle with more than 1 row and column.

Remark 4.12. I have further ongoing work on a “local limit theorem,” attempting to give an estimate for
each bλi akin to the estimate aλ,r ≈ fλ,r/n. The arguments are much harder and progress has stalled. I’ve
proven a generalization of the Fomin–Lulov bound outside of the r-decomposable case and used it to give a
sufficiently powerful bound of the characteristic function in a neighborhood of −1, but attempts to extend
this have not been successful.
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