Refined Cyclic Sieving on Words and Tableaux San Diego JMM, January 13th, 2018

Josh Swanson University of Washington

based on joint work with Connor Ahlbach and Brendon Rhoades

arXiv:1706.08631

Outline

▶ The cyclic sieving phenomenon (CSP) and refinements

Outline

- ▶ The cyclic sieving phenomenon (CSP) and refinements
- Refined CSP on words

Outline

- ▶ The cyclic sieving phenomenon (CSP) and refinements
- Refined CSP on words
- Refined CSP on tableaux

Definition (Reiner-Stanton-White, 2004)

Take (X, C, f(q)) where X is a finite set, C is a finite cyclic group acting on X, and $f(q) \in \mathbb{Z}_{\geq 0}[q]$.

Definition (Reiner-Stanton-White, 2004)

Take (X, C, f(q)) where X is a finite set, C is a finite cyclic group acting on X, and $f(q) \in \mathbb{Z}_{>0}[q]$.

We say (X, C, f(q)) exhibits the cyclic sieving phenomenon (CSP) if for all $c \in C$ and roots of unity $\omega \in \mathbb{C}$ of the same order as c,

$$\#\{x \in X : c \cdot x = x\} = f(\omega).$$

Definition (Reiner-Stanton-White, 2004)

Take (X, C, f(q)) where X is a finite set, C is a finite cyclic group acting on X, and $f(q) \in \mathbb{Z}_{>0}[q]$.

We say (X, C, f(q)) exhibits the cyclic sieving phenomenon (CSP) if for all $c \in C$ and roots of unity $\omega \in \mathbb{C}$ of the same order as c,

$$\#\{x \in X : c \cdot x = x\} = f(\omega).$$

(Equivalently, $f(\omega)$ is $\text{Tr}_{\mathbb{C}\{X\}}(c)$. Note f(1) = #X.)

Example

Let $X = {[n] \choose k}$ and let $C = \mathbb{Z}/n$ act on X by addition mod n: if n = 6, k = 3, then

$$\overline{2} \cdot \{2,3,5\} = \{4,5,1\}.$$

Example

Let $X = {[n] \choose k}$ and let $C = \mathbb{Z}/n$ act on X by addition mod n: if n = 6, k = 3, then

$$\overline{2} \cdot \{2,3,5\} = \{4,5,1\}.$$

Theorem (RSW)

The triple $\binom{\binom{[n]}{k}}{N}$, \mathbb{Z}/n , $\binom{n}{k}_q$ exhibits the CSP.

Example

Let $X = \binom{[n]}{k}$ and let $C = \mathbb{Z}/n$ act on X by addition mod n: if n = 6, k = 3, then

$$\overline{2} \cdot \{2,3,5\} = \{4,5,1\}.$$

Theorem (RSW)

The triple $\binom{\binom{[n]}{k}}{N}$, \mathbb{Z}/n , $\binom{n}{k}_q$ exhibits the CSP.

Recall:

•
$$\binom{n}{k}_q := \frac{[n]_q!}{[k]_q![n-k]_q!}$$

$$[n]_q! := [n]_q[n-1]_q \cdots [1]_q$$

$$[c]_q := 1 + q + \cdots + q^{c-1}$$

Notation

Given stat: $X \to \mathbb{Z}_{>0}$, write

$$X^{\mathsf{stat}}(q) := \sum_{\mathsf{x} \in \mathsf{X}} q^{\mathsf{stat}(\mathsf{x})} \in \mathbb{Z}_{\geq 0}[q].$$

Notation

Given stat: $X \to \mathbb{Z}_{>0}$, write

$$X^{\mathsf{stat}}(q) := \sum_{x \in X} q^{\mathsf{stat}(x)} \in \mathbb{Z}_{\geq 0}[q].$$

Note
$$X^{\text{stat}}(1) = \#X$$
.

Notation

Given stat: $X \to \mathbb{Z}_{>0}$, write

$$X^{\mathsf{stat}}(q) := \sum_{x \in X} q^{\mathsf{stat}(x)} \in \mathbb{Z}_{\geq 0}[q].$$

Note $X^{\text{stat}}(1) = \#X$. In many CSP triples, $f(q) = X^{\text{stat}}(q)$ for some stat.

Example

$$\binom{n}{k}_q = \binom{[n]}{k}^{\mathsf{Sum}'}(q)$$
 where $\mathsf{Sum}'(A) = (\sum_{a \in A} a) - (1 + 2 + \dots + k)$.

Definition (Ahlbach-S.)

Given a CSP triple $(X, C, X^{\text{stat}}(q))$ and $Y \subset X$ closed under the C-action

Definition (Ahlbach–S.)

Given a CSP triple $(X, C, X^{\text{stat}}(q))$ and $Y \subset X$ closed under the C-action, if $(Y, C, Y^{\text{stat}}(q))$ also exhibits the CSP, we say $(Y, C, Y^{\text{stat}}(q))$ refines the CSP triple $(X, C, X^{\text{stat}}(q))$.

Definition (Ahlbach-S.)

Given a CSP triple $(X, C, X^{\text{stat}}(q))$ and $Y \subset X$ closed under the C-action, if $(Y, C, Y^{\text{stat}}(q))$ also exhibits the CSP, we say $(Y, C, Y^{\text{stat}}(q))$ refines the CSP triple $(X, C, X^{\text{stat}}(q))$. (In this case, $(X - Y, C, (X - Y)^{\text{stat}}(q))$ also exhibits the CSP.)

Definition (Ahlbach–S.)

Given a CSP triple $(X, C, X^{\text{stat}}(q))$ and $Y \subset X$ closed under the C-action, if $(Y, C, Y^{\text{stat}}(q))$ also exhibits the CSP, we say $(Y, C, Y^{\text{stat}}(q))$ refines the CSP triple $(X, C, X^{\text{stat}}(q))$. (In this case, $(X - Y, C, (X - Y)^{\text{stat}}(q))$ also exhibits the CSP.)

Example

Take
$$X = {[6] \choose 3}$$
, $Y = \mathbb{Z}/6 \cdot \{2, 3, 4\}$

Definition (Ahlbach-S.)

Given a CSP triple $(X, C, X^{\text{stat}}(q))$ and $Y \subset X$ closed under the C-action, if $(Y, C, Y^{\text{stat}}(q))$ also exhibits the CSP, we say $(Y, C, Y^{\text{stat}}(q))$ refines the CSP triple $(X, C, X^{\text{stat}}(q))$. (In this case, $(X - Y, C, (X - Y)^{\text{stat}}(q))$ also exhibits the CSP.)

Example

Take
$$X={[6]\choose 3}$$
, $Y=\mathbb{Z}/6\cdot\{2,3,4\}$. Then $Y^{\mathsf{Sum'}}(q)=1+2q^3+2q^6+q^9$, and
$$Y^{\mathsf{Sum'}}(1)=6, \qquad Y^{\mathsf{Sum'}}(-1)=0,$$
 $Y^{\mathsf{Sum'}}(\omega_3)=6, \qquad Y^{\mathsf{Sum'}}(\omega_6)=0.$

Definition (Ahlbach–S.)

Given a CSP triple $(X, C, X^{\text{stat}}(q))$ and $Y \subset X$ closed under the C-action, if $(Y, C, Y^{\text{stat}}(q))$ also exhibits the CSP, we say $(Y, C, Y^{\text{stat}}(q))$ refines the CSP triple $(X, C, X^{\text{stat}}(q))$. (In this case, $(X - Y, C, (X - Y)^{\text{stat}}(q))$ also exhibits the CSP.)

Example

Take
$$X={[6]\choose 3},\ Y=\mathbb{Z}/6\cdot\{2,3,4\}.$$
 Then $Y^{\mathsf{Sum'}}(q)=1+2q^3+2q^6+q^9,$ and
$$Y^{\mathsf{Sum'}}(1)=6,\qquad Y^{\mathsf{Sum'}}(-1)=0,$$
 $Y^{\mathsf{Sum'}}(\omega_3)=6,\qquad Y^{\mathsf{Sum'}}(\omega_6)=0.$

We would need $Y^{\text{Sum}'}(\omega_3) = 0$, not 6. So, $(Y, \mathbb{Z}/n, Y^{\text{Sum}'}(q))$ does NOT quite refine the RSW CSP $(X, \mathbb{Z}/n, X^{\text{Sum}'}(q))$.

The *cyclic blocks* of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1, 2, 4, 6\} \subset [6]$ has two cyclic blocks, 612 and 4.)

The *cyclic blocks* of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1,2,4,6\} \subset [6]$ has two cyclic blocks, 612 and 4.) Let

 $S_k :=$ the k-element subsets of [n]

 $S_{k,b} :=$ the k-element subsets of [n] with b cyclic blocks.

The *cyclic blocks* of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1,2,4,6\} \subset [6]$ has two cyclic blocks, 612 and 4.) Let

 $S_k :=$ the k-element subsets of [n]

 $S_{k,b} :=$ the k-element subsets of [n] with b cyclic blocks.

Let mbs be the sum of the ends of the cyclic blocks of a subset of [n]. (Ex: mbs($\{1,2,4,6\} \subset [6]$) = 2+4=6.)

The *cyclic blocks* of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1,2,4,6\} \subset [6]$ has two cyclic blocks, 612 and 4.) Let

 $S_k :=$ the k-element subsets of [n]

 $S_{k,b} :=$ the k-element subsets of [n] with b cyclic blocks.

Let mbs be the sum of the ends of the cyclic blocks of a subset of [n]. (Ex: mbs($\{1,2,4,6\} \subset [6]$) = 2+4=6.)

Theorem (Ahlbach-S.)

 $(S_{k,b}, \mathbb{Z}/n, S_{k,b}^{\mathsf{mbs}}(q))$ refines the CSP triple $(S_k, \mathbb{Z}/n, S_k^{\mathsf{mbs}}(q))$.

The *cyclic blocks* of a subset of [n] are maximal sequences of adjacent elements in the subset, where 1 is considered adjacent to n. (Ex: $\{1,2,4,6\} \subset [6]$ has two cyclic blocks, 612 and 4.) Let

 $S_k :=$ the k-element subsets of [n]

 $S_{k,b} :=$ the k-element subsets of [n] with b cyclic blocks.

Let mbs be the sum of the ends of the cyclic blocks of a subset of [n]. (Ex: mbs($\{1, 2, 4, 6\} \subset [6]$) = 2 + 4 = 6.)

Theorem (Ahlbach–S.)

 $(S_{k,b}, \mathbb{Z}/n, S_{k,b}^{\mathsf{mbs}}(q))$ refines the CSP triple $(S_k, \mathbb{Z}/n, S_k^{\mathsf{mbs}}(q))$.

Here $X^{\text{Sum}'}(q)$ is "equivalent" to $\binom{n}{k}_q$, so the unrefined triple is essentially RSW's.

Definition

Given a word $w=w_1\cdots w_n$ with letters $w_i\in\mathbb{Z}_{\geq 1}$, the *descent set* of w is

$$\mathsf{Des}(w) := \{i \in [n-1] : w_i > w_{i+1}\}.$$

Definition

Given a word $w = w_1 \cdots w_n$ with letters $w_i \in \mathbb{Z}_{\geq 1}$, the *descent set* of w is

$$Des(w) := \{i \in [n-1] : w_i > w_{i+1}\}.$$

The major index of w is

$$\mathsf{maj}(w) := \sum_{i \in \mathsf{Des}(w)} i.$$

Definition

Given a word $w = w_1 \cdots w_n$ with letters $w_i \in \mathbb{Z}_{\geq 1}$, the *descent set* of w is

$$Des(w) := \{i \in [n-1] : w_i > w_{i+1}\}.$$

The major index of w is

$$\mathsf{maj}(w) := \sum_{i \in \mathsf{Des}(w)} i.$$

The *content* of w is the weak composition $\alpha = (\alpha_1, \alpha_2, ...) \models n$ where

$$\alpha_i := \#i$$
's in α .

Definition

Given a word $w = w_1 \cdots w_n$ with letters $w_i \in \mathbb{Z}_{\geq 1}$, the *descent set* of w is

$$Des(w) := \{i \in [n-1] : w_i > w_{i+1}\}.$$

The major index of w is

$$\mathsf{maj}(w) := \sum_{i \in \mathsf{Des}(w)} i.$$

The *content* of w is the weak composition $\alpha = (\alpha_1, \alpha_2, ...) \models n$ where

$$\alpha_i := \#i$$
's in α .

(Ex: If w = 323314, then $Des(w) = \{1,4\}$, maj(w) = 1 + 4 = 5, and $\alpha = (1,1,3,1)$.)

Notation Let

 $W_{\alpha}:=$ words of content $\alpha.$

Notation

Let

 $W_{\alpha} := \text{words of content } \alpha.$

 \mathbb{Z}/n acts on W_{α} by rotation:

 $\overline{2} \cdot 011010 = 100110.$

Notation

Let

 $W_{\alpha} := \text{words of content } \alpha.$

 \mathbb{Z}/n acts on W_{α} by rotation:

$$\overline{2} \cdot 011010 = 100110.$$

Theorem (RSW)

The triple $(W_{\alpha}, \mathbb{Z}/n, W_{\alpha}^{\mathsf{maj}}(q))$ exhibits the CSP.

Notation

Let

 $W_{\alpha} := \text{words of content } \alpha.$

 \mathbb{Z}/n acts on W_{α} by rotation:

$$\overline{2} \cdot 011010 = 100110.$$

Theorem (RSW)

The triple $(W_{\alpha}, \mathbb{Z}/n, W_{\alpha}^{\mathsf{maj}}(q))$ exhibits the CSP.

Remark

They actually proved a generalization valid for all finite Coxeter groups using Springer's regular elements, representation theory, coinvariant algebras, and len instead of maj.

Definition

Cyclic descent type (CDT) of a word:

Definition

Cyclic descent type (CDT) of a word: if w = 143124114223, then

$$w^{(1)} = 1111$$
 $cdes(w^{(1)}) = 0,$ $w^{(2)} = 112.1122.$ $cdes(w^{(2)}) = 2,$ $w^{(3)} = 13.12.11223.$ $cdes(w^{(3)}) = 3,$ $w^{(4)} = 14.3.124.114.223.$ $cdes(w^{(4)}) = 5.$

Definition

Cyclic descent type (CDT) of a word: if w = 143124114223, then

$$w^{(1)} = 1111$$
 $cdes(w^{(1)}) = 0,$ $w^{(2)} = 112.1122.$ $cdes(w^{(2)}) = 2,$ $w^{(3)} = 13.12.11223.$ $cdes(w^{(3)}) = 3,$ $w^{(4)} = 14.3.124.114.223.$ $cdes(w^{(4)}) = 5.$

We set CDT(143124114223) =
$$(0, 2-0, 3-2, 5-3) = (0, 2, 1, 2)$$
.

Definition

Cyclic descent type (CDT) of a word: if w = 143124114223, then

$$w^{(1)} = 1111$$
 $cdes(w^{(1)}) = 0,$ $w^{(2)} = 112.1122.$ $cdes(w^{(2)}) = 2,$

$$w^{(3)} = 13.12.11223.$$
 $cdes(w^{(3)}) = 3,$

$$w^{(4)} = 14.3.124.114.223.$$
 $cdes(w^{(4)}) = 5.$

We set CDT(143124114223) =
$$(0, 2-0, 3-2, 5-3) = (0, 2, 1, 2)$$
.

Notation

Let

 $W_{\alpha,\delta} := \text{words } w \text{ with content } \alpha \text{ and } \mathsf{CDT}(w) = \delta.$

Theorem (Ahlbach-S.) $(W_{\alpha,\delta},\mathbb{Z}/n,W_{\alpha,\delta}^{\mathsf{maj}}(q))$ refines the CSP triple $(W_{\alpha},\mathbb{Z}/n,W_{\alpha}^{\mathsf{maj}}(q))$.

Theorem (Ahlbach-S.)

 $(W_{\alpha,\delta},\mathbb{Z}/n,W^{\sf maj}_{\alpha,\delta}(q))$ refines the CSP triple $(W_{\alpha},\mathbb{Z}/n,W^{\sf maj}_{\alpha}(q))$.

Remark

Completely different proof than RSW. Combinatorial and largely recursive. Involves Carlitz-style decomposition, (more or less new) notion of "modular periodicity," a CSP extension lemma, a non-equivariant-but-fixed-point-preserving bijection, products of CSP's on sets and multisets.

One key step:

One key step:

Theorem (Ahlbach-S.)

Let $\alpha \vDash n$ be a strong composition with m parts, $\delta \vDash k$, $n_i := |w^{(i)}|$, $k_i := \mathsf{cdes}(w^{(i)})$, $d := \mathsf{gcd}(n, k)$. Then, modulo $q^n - 1$,

$$egin{aligned} W_{lpha,\delta}^{\mathsf{maj}}(q) &\equiv rac{d}{lpha_1} [n/d]_{q^d} \prod_{\ell=2}^m q^{k_\ell lpha_\ell} inom{n_{\ell-1} - k_{\ell-1}}{\delta_\ell}_q inom{k_\ell}{lpha_\ell - \delta_\ell}_q inom{k_\ell}{lpha_\ell - \delta_\ell}_{q^{-1}} \ &\equiv rac{d}{lpha_1} [n/d]_{q^d} q^\eta \prod_{\ell=2}^m inom{n_{\ell-1} - k_{\ell-1}}{\delta_\ell}_q inom{k_\ell}{lpha_\ell - \delta_\ell}_q inom{k_\ell}{lpha_\ell - \delta_\ell}_q \ \end{aligned}$$

where
$$\eta := \binom{k}{2} + \sum_{\ell=2}^{m} \binom{\delta_{\ell}}{2} - \alpha_{1}$$
.

Definition

Given $T \in SYT(\lambda)$,

 $Des(T) := \{i : i + 1 \text{ is in a lower row than } i\}.$

Definition

Given
$$T \in SYT(\lambda)$$
,

$$Des(T) := \{i : i + 1 \text{ is in a lower row than } i\}.$$

Ex:

$$T = 124 \Rightarrow Des(T) = \{2, 4, 6\}.$$

Definition

Given $T \in SYT(\lambda)$,

$$Des(T) := \{i : i + 1 \text{ is in a lower row than } i\}.$$

Ex:

$$T = 124 \Rightarrow Des(T) = \{2, 4, 6\}.$$

As before, maj(T) := $\sum_{i \in Des(T)} i$.

Definition

Given $T \in SYT(\lambda)$,

$$Des(T) := \{i : i + 1 \text{ is in a lower row than } i\}.$$

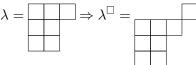
Ex:

$$T = 124 \Rightarrow Des(T) = \{2, 4, 6\}.$$

As before, maj(T) := $\sum_{i \in Des(T)} i$.

Definition

Given $\lambda \vdash n-1$, let $\lambda^{\square} \vdash n$ be the following "slightly skew partition":



Remark

Elizalde–Roichman (2017) defined a bijection $\sigma \colon \mathsf{SYT}(\lambda^\square) \to \mathsf{SYT}(\lambda^\square)$ whose orbits are size n.

Remark

Elizalde–Roichman (2017) defined a bijection $\sigma\colon \mathsf{SYT}(\lambda^\square)\to \mathsf{SYT}(\lambda^\square)$ whose orbits are size n. They also defined cDes: $\mathsf{SYT}(\lambda^\square)\to 2^{[n]}$ such that

- (i) $cDes(T) \cap [n-1] = Des(T)$
- (ii) $cDes(\sigma^k \cdot T) = \overline{k} \cdot cDes(T)$.

Remark

Elizalde–Roichman (2017) defined a bijection

 $\sigma \colon \mathsf{SYT}(\lambda^\square) \to \mathsf{SYT}(\lambda^\square)$ whose orbits are size n. They also defined cDes: $\mathsf{SYT}(\lambda^\square) \to 2^{[n]}$ such that

- (i) $cDes(T) \cap [n-1] = Des(T)$
- (ii) $cDes(\sigma^k \cdot T) = \overline{k} \cdot cDes(T)$.

Theorem (Ahlbach-Rhoades-S.)

The triple $(SYT(\lambda^{\square}), \langle \sigma \rangle, SYT(\lambda^{\square})^{maj}(q))$ exhibits the CSP.

Remark

Elizalde–Roichman (2017) defined a bijection $\sigma \colon \mathsf{SYT}(\lambda^\square) \to \mathsf{SYT}(\lambda^\square)$ whose orbits are size n. They also defined cDes: $\mathsf{SYT}(\lambda^\square) \to 2^{[n]}$ such that

- (i) $cDes(T) \cap [n-1] = Des(T)$
- (ii) $cDes(\sigma^k \cdot T) = \overline{k} \cdot cDes(T)$.

Theorem (Ahlbach-Rhoades-S.)

The triple $(SYT(\lambda^{\square}), \langle \sigma \rangle, SYT(\lambda^{\square})^{maj}(q))$ exhibits the CSP.

Remark

Proof reduces to showing $[n]_q$ divides $SYT(\lambda^{\square})^{maj}(q)$.

Remark

Elizalde–Roichman (2017) defined a bijection $\sigma \colon \mathsf{SYT}(\lambda^\square) \to \mathsf{SYT}(\lambda^\square)$ whose orbits are size n. They also defined cDes: $\mathsf{SYT}(\lambda^\square) \to 2^{[n]}$ such that

- (i) $cDes(T) \cap [n-1] = Des(T)$
- (ii) $cDes(\sigma^k \cdot T) = \overline{k} \cdot cDes(T)$.

Theorem (Ahlbach-Rhoades-S.)

The triple $(SYT(\lambda^{\square}), \langle \sigma \rangle, SYT(\lambda^{\square})^{maj}(q))$ exhibits the CSP.

Remark

Proof reduces to showing $[n]_q$ divides $SYT(\lambda^{\square})^{maj}(q)$. Follows from

$$SYT(\lambda^{\square})^{\text{maj}}(q) = \binom{n}{n-1,1}_{q} SYT(\lambda)^{\text{maj}}(q) SYT(\square)^{\text{maj}}(q)$$
$$= [n]_{q} SYT(\lambda)^{\text{maj}}(q).$$

Notation

Write

$$\mathsf{SYT}(\lambda^\square; k) := \{ T \in \mathsf{SYT}(\lambda^\square) : \mathsf{cdes}(T) = k \}.$$

Notation

Write

$$\mathsf{SYT}(\lambda^\square; k) := \{ T \in \mathsf{SYT}(\lambda^\square) : \mathsf{cdes}(T) = k \}.$$

Theorem (Ahlbach–Rhoades–S.)

 $(\mathsf{SYT}(\lambda^{\square}; k), \langle \sigma \rangle, \mathsf{SYT}(\lambda^{\square}; k)^{\mathsf{maj}}(q))$ refines the CSP triple $(\mathsf{SYT}(\lambda^{\square}), \langle \sigma \rangle, \mathsf{SYT}(\lambda^{\square})^{\mathsf{maj}}(q))$.

Notation

Write

$$\mathsf{SYT}(\lambda^\square; k) := \{ T \in \mathsf{SYT}(\lambda^\square) : \mathsf{cdes}(T) = k \}.$$

Theorem (Ahlbach-Rhoades-S.)

 $(\mathsf{SYT}(\lambda^{\square}; k), \langle \sigma \rangle, \mathsf{SYT}(\lambda^{\square}; k)^{\mathsf{maj}}(q))$ refines the CSP triple $(\mathsf{SYT}(\lambda^{\square}), \langle \sigma \rangle, \mathsf{SYT}(\lambda^{\square})^{\mathsf{maj}}(q))$.

Remark

Showing $[n]_q \mid \mathsf{SYT}(\lambda^\square; k)^{\mathsf{maj}}(q)$ is significantly more involved. Uses an inner product formula of Adin–Reiner–Roichman (2017) for Elizalde–Roichman's cyclic descent extensions, a "change of basis," and the $W^{\mathsf{maj}}_{\alpha,\delta}(q)$ product formula above.

► In progress: refine Rhoades' sieving result on rectangular tableaux.

► In progress: refine Rhoades' sieving result on rectangular tableaux. (Catalan case done.)

- In progress: refine Rhoades' sieving result on rectangular tableaux. (Catalan case done.)
- ▶ In progress: further explore the CSP and Roichman et al's other cyclic descent extensions

- In progress: refine Rhoades' sieving result on rectangular tableaux. (Catalan case done.)
- ▶ In progress: further explore the CSP and Roichman et al's other cyclic descent extensions
- lacktriangle Give a representation-theoretic proof of $W_{lpha,\delta}$ result

Thanks!

THUMRS!