
LEHRER–SOLOMON COHOMOLOGY DECOMPOSITION

JOSHUA P. SWANSON

Abstract. These are lecture notes for a 25-minute talk given in the University of Washington Hyperplane
Arrangements class on June 1st, 2018. It is essentially a summary of Lehrer–Solomon’s On the Action of the

Symmetric Group on the Cohomology of the Complement of Its Reflecting Hyperplanes
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1. The cohomology ring

Let A be a central hyperplane arrangement in V = Cn. Let

M := V −
⋃

H∈A
H

be the complement of the hyperplanes. View M as a (real) manifold of dimension 2n.

Example 1.1. When A is the braid arrangement,

M = {(z1, . . . , zn) ∈ Cn : zi 6= zj , 1 ≤ i 6= j ≤ n}.

Note that this M is connected, in contrast to what would happen if we used real coefficients. Sean will have
more to say on this.

Let H∗(M) = H∗(M,C) denote the de Rham cohomology of M with complex coefficients. This is a
graded-commutative C-algebra. (Recall that this means xy = (−1)deg(x) deg(y)yx; think the exterior algebra
of a vector space.) The underlying topological constructions are unimportant to us and will just motivate the
combinatorics.
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2. G-module structures

Suppose G ⊂ GL(V ) is a group which preserves M , i.e. g : M → M for each g ∈ G. Cohomology
is contravariantly functorial, i.e. a smooth map f : M → N induces a morphism of graded-commutative
C-algebras H∗(N)→ H∗(M) which respects function composition. Consequently, G acts by automorphisms
on H∗(M). Since H∗(M) is a C-algebra already, this turns H∗(M) into a (graded) CG-module.

Question 2.1. How can we usefully describe the CG-module structure on H∗(M)? For instance, how many
copies of the trivial representation are there? In which degrees?

Example 2.2. When A is the braid arrangement, G = Sn embedded in GL(V ) as permutation matrices
preserves M , so we get a CSn-module. CSn-modules are extremely well-studied in algebraic combinatorics.

3. The Orlik–Solomon algebra

Orlik and Solomon (1980) described H∗(M) by generators and relations as follows.

Definition 3.1. Let A ⊂ V = Cn be a central hyperplane arrangement. Let E(A) be the exterior algebra over
C generated by eH for H ∈ A. Suppose H1, . . . ,Hp are dependent hyperplanes (i.e. codimH1 ∩ · · · ∩Hp < p).
Let I(A) be the ideal generated by relations

p∑
k=1

(−1)k−1eH1 · · · êHk
· · · eHp

for all dependent H1, . . . ,Hp. The Orlik–Solomon algebra of A is

A(A) := E(A)/I(A).

Write aH for the image of eH in A(A).

Example 3.2. For instance, multiplying the relation by aH1
and using the fact that a2H1

= 0 gives

aH1 · · · aHp = 0

for dependent H1, . . . ,Hp.

Definition 3.3. Continuing the previous definition, if G ⊂ GL(V ) preserves A, then A is a CG-module
where

g · aH := ag·H

for all g ∈ G, H ∈ A.

Theorem 3.4 (Orlik–Solomon (1980)). Let A ⊂ V = Cn be a central hyperplane arrangement. Let
M = V − ∪H∈AH be the complement of the hyperplanes. Then

H∗(M) ∼= A(A)

as graded-commutative C-algebras. If G ⊂ GL(V ) preserves A, then this isomorphism is also an isomorphism
of graded CG-modules.

4. A first decomposition

We can quickly use the Orlik–Solomon algebra to decompose H∗(M) into a sum of induced CG-modules
as follows.

Definition 4.1. Let X ∈ L(A) be an element of the intersection lattice of A. Let AX(A) be the span of all
aH1 · · · aHp where H1 ∩ · · · ∩Hp = X.

For g ∈ G, we have
g · aH1 · · · aHp = ag·H1 · · · ag·Hp .

Consequently, g · AX(A) = Ag·X(A) where we’ve used the natural G-action on L(A). Letting GX :=
StabG(X) := {g ∈ G : g ·X = X}, we also see that AX(A) is a CGX -module.
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Theorem 4.2 (Orlik–Solomon). We have

A(A) =
⊕

X∈L(A)

AX(A).

Definition 4.3. For a G-orbit O of L(A), set

AO(A) :=
⊕
X∈O

AX(A).

Proposition 4.4. Let X ∈ O. Then as CG-modules,

AO(A) ∼= AX(A)↑GGX

where GX = StabG(X) = {g ∈ G : g · X = X}. (Recall that induced modules are defined by M ↑GH :=
CG⊗CH M .)

Proof. (Sketch.) There is a standard construction of the induced module M↑GH as a sum of copies of H
indexed by cosets in G/H with a natural G-action. One can check this coincides with the above. This
construction can be realized on the level of the tensor product by decomposing CG as a free CH-module of
rank [G : H]. �

Theorem 4.5 (Lehrer–Solomon). In the above situation,

H∗(M) ∼= A(A) ∼=
⊕
X

AX(A)↑GGX

as graded CG-modules, where X runs over a complete set of representatives of orbits of the G-action on L(A).

5. A refined type A decomposition

For the braid arrangement, the constituent GX -modules AX(A) themselves can be described as certain
induced linear characters. Lehrer–Solomon’s argument is complicated but fundamentally comes from a
combinatorial analysis of the Orlik–Solomon algebra’s monomials and the Sn-action on the lattice of set
partitions. The main result is the following.

Theorem 5.1 (Lehrer–Solomon). There is a CSn-module isomorphism

Hp(M) ∼=
⊕
c

ξc↑Sn

Z(c)

for p = 0, . . . , n− 1 where c runs over a full set of representatives for the conjugacy classes of permutations
with n− p cycles and ξc is an explicitly defined linear character of the centralizer Z(c) of c in Sn.

See Definition 4.3(ii) and (iii) for the explicit, somewhat involved definition of ξc.

6. A consequence

Proposition 6.1. Let A be the braid arrangement in Cn. Then H∗(M) as an CSn-module has exactly two
copies of the trivial representation.

Proof. We compute by Frobenius reciprocity

〈ξc↑Sn

Z(c), 1〉Sn
= 〈ξc, 1↓Sn

Z(c)〉Z(c),

i.e. we need to count the number of times ξc is the trivial representation. Using the explicit description one
finds this happens exactly twice. �
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