
INV AND MAJ ASYMPTOTICS

JOSHUA P. SWANSON

Abstract. These notes were for a lecture given in the University of Washington probability seminar on
March 26th, 2018.
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1. Inversions

1.1. Kendall’s τ Statistic.

Question 1.1. Given a joint random variable (X,Y ), are X and Y independent?

Suppose (x1, y1), . . . , (xn, yn) is a sequence of distinct observations, reordered so that x1 < · · · < xn. Say
yw1 < · · · < ywn . If X and Y are independent, then for each i < j, despite knowing xi < xj , both yi < yj
and yi > yj are equally likely.

Definition 1.2. Let w = w1 · · ·wn ∈ Sn be a permutation in the symmetric group Sn. The inversion number
of w is

inv(w) := #{i < j : wi > wj}.

Example 1.3. If w = id = 1 2 · · · n, then inv(id) = 0. If w = w0 = n (n− 1) · · · 1, then inv(w0) =
(
n
2

)
.

Note that inv(w1 · · ·wn) is #{i < j : yi > yj} or, if not sorting,

#{i < j : xi < xj and yi > yj , or xi > xj and yi < yj}.

Definition 1.4 (Kendall). Set τ = 1− 2 inv(w)

(n2)
∈ [−1, 1].
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If X,Y are independent, then, for example, P[τ = 1] = P[inv = 0] = 1/n! is extremely unlikely.

Question 1.5. What is the distribution of inv on Sn, taken uniformly at random?

Write [i, j] := {i, i+ 1, . . . , j − 1, j}.

Lemma 1.6. Let

invi : Sn → [0, i− 1]

invi(w1 · · ·wn) := #{j : i < j and wi > wj}.

The map

Sn →
n∏
i=1

[0, n− i]

w 7→ (inv1(w), . . . , invn(w))

is a bijection.

Corollary 1.7. inv is the sum of independent (though not identically distributed) discrete uniform random
variables with variance σ2

n ∼ n3/36.

Corollary 1.8. As n → ∞, inv, and hence τ , are approximately normally distributed. So, we can do a
Z-test on τ to check if X,Y are probably not independent.

1.2. Generating Functions. The following is a key bridge between combinatorics and probability.

Definition 1.9. Let W be a finite set and suppose stat : W → Z≥0. The (ordinary) generating function of
stat on W is

W stat(q) :=
∑
w∈W

qstat(w).

The probability generating function of stat on W taken uniformly at random is then∑
i≥0

P[stat = i]qi =
W stat(q)

#W
.

The characteristic function of stat is then

φstat(t) :=
W stat(eit)

#W
.

In this notation, the preceding lemma gives:

Corollary 1.10 (Netto). We have

Sinv
n (q) = [n]q! := [n]q[n− 1]q · · · [1]q

where

[c]q := 1 + q + · · ·+ qc−1 =
1− qc

1− q
.

An enormous amount of work in algebraic combinatorics has gone into finding “nice” expressions for a
huge variety of generating functions. We’ll see several more examples in today’s talk.
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2. Inversions and Major Index

2.1. Baxter–Zeilberger.

Definition 2.1. The descent set of a permutation is given by

Des: Sn → 2[n]

Des(w1 · · ·wn) := {1 ≤ i < n : wi > wi+1}.
The major index is

maj(w) :=
∑

i∈Des(w)

i.

Example 2.2. Des(314652) = {1, 4, 5}, maj(314652) = 1 + 4 + 5 = 10.

Theorem 2.3 (MacMahon). We have

Smaj
n (q) = [n]q!.

Consequently, inv and maj are equidistributed on Sn.

Definition 2.4. Let

Xn :=
inv−µn
σn

and Yn :=
maj−µn

σn
.

Theorem 2.5 (Baxter–Zeilberger). Xn, Yn are jointly independently asymptotically normally distributed as
n→∞.

Baxter–Zeilberger’s proof used the method of (mixed, factorial) moments and combinatorial recursions.
Romik asked whether a certain generating function expression of Roselle could instead be used. Zeilberger
subsequently offered a $300 reward for such a proof, which we’ll sketch next. The new proof has the benefit
of providing significant intuition into why the result should be true.

2.2. Roselle and a Correction Factor.

Theorem 2.6 (Roselle). Let

Hn(p, q) :=
∑
w∈Sn

pinv(w)qmaj(w) = S(inv,maj)
n (p, q).

Then ∑
n≥0

Hn(p, q)

(p)n(q)n
zn =

∏
a,b≥0

1

1− paqbz

where (p)n := (1− p)(1− p2) · · · (1− pn).

Easy manipulations with Roselle’s formula give the following equivalent formulation:

(1)
Hn(p, q)

n!
=

[n]p![n]q!

n!2
Fn(p, q)

where

Fn(p, q) :=
n! · {zn}

(∏
a,b≥0(1− paqbz)−1

)
[(1− p)(1− q)]−n

.

From Netto’s formula, MacMahon’s formula, and Lévy continuity, we have

φXn(s) = φYn(s) = e−iµns/σn
[n]eis/σn !

n!

n→∞→ 1√
2π
e−s

2/2.

Also by Lévy, Baxter–Zeilberger’s conclusion is equivalent to

lim
n→∞

φ(Xn,Yn)(s) =
1

2π
e−(s

2+t2)/2.
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Combining (1) and these observations, Baxter–Zeilberger’s result is equivalent to

lim
n→∞

Fn(eis/σn , eit/σn) = 1.

The “correction factor” Fn has a nice combinatorial interpretation.

• Note

[(1− p)(1− q)]−1 = (1 + p+ p2 + · · · )(1 + q + q2 + · · · ) =
∑

(a,b)∈Z2
≥0

paqb

is the generating function of pairs (a, b) ∈ Z2
≥0.

• Consequently, [(1− p)(1− q)]−n is the generating function for size-n lists of pairs in Z2
≥0.

• In a similar way, one may show that {zn}
(∏

a,b≥0(1− paqbz)−1
)

is the generating function for size-n

multisets from Z2
≥0.

That is,

Fn(p, q) =
n! · g.f. of size-n multisets from Z2

≥0

g.f. of size-n lists from Z2
≥0

.

One may expect the numerator and denominator to agree “to first order”, which provides an intuitive
explanation for Baxter–Zeilberger. The rest of the proof essentially makes this intuition precise.

2.3. Proof Highlights.

Definition 2.7. A partition of n of length k is a sequence λ = (λ1, λ2, . . . , λk) where λ1 ≥ λ2 ≥ · · · ≥ λk
are in Z≥0 and λ1 + · · ·+ λk = n. In this case we write λ ` n and `(λ) = k.

The Young diagram of λ is (draw out).

Theorem 2.8 (S.). We have

Fn(p, q) =

n∑
d=0

[(1− p)(1− q)]d
∑
µ`n

`(µ)=n−d

cµ∏n−d
i=1 [µi]p[µi]q

for some explicit constants cµ ∈ Z.

Example 2.9. Let q → 1 in the above. Only the d = 0 term survives, which includes only µ = (1, . . . , 1) =
(1n), giving Fn(p, 1) = c(1n) = 1 and Hn(p, 1) = [n]p!, recovering Netto’s result. Likewise we recover
MacMahon’s result.

The proof reinterprets the above list and multiset generating functions and performs a “change of basis”
using Möbius inversion on the set partition lattice. Ultimately, we arrive at the following.

Theorem 2.10 (S.). We have

lim
n→∞

|Fn(eis/σn , eit/σn)− 1| ≤ lim
n→∞

3

n∑
d=1

|st|dn
2d

σ2d
n

= 0.

The proof uses the explicit expression for cµ along with some estimates related to Stirling numbers of the
first kind. Baxter–Zeilberger follows immediately.
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3. Tableaux Generalizations

This section involves joint work with Sara Billey and Matjaž Konvalinka.

Descent sets are an extremely important notion in algebraic combinatorics. The following objects are
fundamental to the representation theory of symmetric groups and also have a natural notion of “descent
set.”

Definition 3.1. Given a partition λ, a standard Young tableaux of shape λ is a filling of the cells of the
Young diagram of λ with labels 1, 2, . . . , n (each used once) which increase along rows and columns. Write
SYT(λ) for the set of standard Young tableaux of shape λ.

Example 3.2. Let λ = (4, 4, 2) and T ∈ SYT(λ) where

T = 1 2 5 6
3 7 8 10
4 9

.

Definition 3.3. The descent set of T ∈ SYT(λ) is the set of all i where i+ 1 is in a lower row of T than i.
The major index of T is again

maj(T ) :=
∑

i∈Des(T )

i.

Example 3.4. T above has Des(T ) = {2, 3, 6, 8} and maj(T ) = 2 + 3 + 6 + 8 = 19.

SYT(λ)maj(q), that is, the probability generating function of maj on SYT(λ), has surprisingly deep
connections to the representation and invariant theory of complex reflection groups. We may naturally ask:

Question 3.5. What does the distribution of maj on SYT(λ) look like?

For Sn, as n→∞, up to rescaling the answer is a normal distribution. An immediate difficulty here is
that there is no one sense in which “λ→∞.” Nonetheless, we completely classify the possible (continuous)

limiting distributions as follows. Write X∗ := X−µ
σ .

Definition 3.6. Define a statistic on partitions λ ` n,

aft(λ) := n−max{first row length, first column length}.
Example 3.7. (Draw it out.)

Theorem 3.8. Let λ(1), λ(2), . . . be a sequence of partitions. Then (Xλ(N) [maj]∗) converges in distribution if
and only if

(i) aft(λ(N))→∞; or
(ii) |λ(N)| → ∞ and aft(λ(N)) is eventually constant; or
(iii) the distribution of X∗

λ(N) [maj] is eventually constant.

The limit law is N (0, 1) in case (i), Σ∗M in case (ii), and discrete in case (iii). Here ΣM is the “uniform-sum”
or Irwin–Hall distribution.

Example 3.9. Let λ(N) = (N,N), so that aft(λ(N)) = 2N −N = N →∞ and we are in case (i), asymptotic
normality. This recovers a result of Chen–Wang–Wang on coefficients of q-Catalan numbers.

The proof uses Stanley’s q-hook length formula, cumulants, and some combinatorial estimates involving
hooks.

Remark 3.10. We have a more general result using certain “skew partitions” which includes the permutation
case (where aft is n−1→∞, as needed) and which generalizes work of Canfield–Janson–Zeilberger and others.
We’ve also completely classified the “internal zeros” of SYT(λ)maj(q) using a combinatorial argument which
mutates the descent sets of tableaux in a very controlled manner. This latter result strengthens an earlier
result of (S.) answering a conjecture of Sundaram. That earlier result was proven by using representation
theory to give a local limit theorem for the statistic maj modulo n on SYT(λ) with a uniform limit.
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