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Complex Reflection Groups

Definition Let V be a finite-dimensional complex vector space.
T ∈ End(V ) is a pseudo-reflection if T has finite order
and leaves a hyperplane fixed pointwise.

A complex
reflection group is a finite subgroup G ≤ GL(V ) .

Example

Dihedral groups

(Type A) Symmetric groups

(Type B) Hyperoctahedral groups (signed
permutations; symmetries of the hypercube conv{±ei})

Cyclic groups
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Complex Reflection Groups

Definition Given m,n ∈ Z≥1, let G(m,1,n) be the group of n × n
pseudo-permutation matrices whose non-zero entries are
from Cm ∶= {ζ ∈ C ∶ ζm = 1}.

Definition Given d ∣ m, let G(m,1,n)↠ Cm be given by
multiplying the non-zero elements, let
φ∶G(m,1,n)↠ Cm ↠ Cd , and set G(m,d ,n) ∶= kerφ.

Theorem (Shephard–Todd ’53) Up to isomorphism, the complex
reflection groups are precisely the direct products of the
groups G(m,d ,n) along with 34 exceptional groups.
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Coinvariant Algebras

Definition Given G ≤ GL(V ), the coinvariant algebra of G is

RG ∶= Sym(V )
IG

where IG is the ideal generated by all homogeneous
G -invariants of positive degree.

Remark RG is a graded G -module.

(Type A) When G = Sn,

RG = Rn = C[x1, . . . , xn]/(e1, . . . , en).

(Type B) When G = G(2,1,n),

RG = R2,1,n = C[x1, . . . , xn]/(ei(x21 , . . . , x2n) ∶ 1 ≤ i ≤ n).
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Fake Degrees

Theorem (Chevalley ’55) RG as an ungraded module is isomorphic
to the regular representation of the complex reflection
group G .

Definition Let S be an irreducible representation of G . Lusztig
called

f S(q) ∶=∑
i≥0

mult. of S in ith degree piece of RG ⋅ qi

the fake degree of S . By Chevalley’s result,
f S(1) = degS .

Question Equivalently, what are the f S(q)’s?
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Partitions

Definition A partition λ of n is a sequence of positive integers
λ1 ≥ λ2 ≥ ⋯ such that ∑i λi = n.

Partitions can be
visualized by their Ferrers diagram

λ = (5,3,1)↔

Theorem (Young, early 1900’s) The complex inequivalent
irreducible representations Sλ of Sn are canonically
indexed by partitions of n.

Remark By contrast, the irreps of Cm are most naturally indexed
by Z/m only up to φ(m) additive automorphisms.
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Standard Tableaux

Definition A standard Young tableau (SYT ) of shape λ ⊢ n is a
filling of the cells of the Ferrers diagram of λ with
1,2, . . . ,n which increases along rows and decreases
down columns.

T = 1 3 6 7 9
2 5 8
4

∈ SYT(λ)

Descent set: {1,3,7}. Major index: 1 + 3 + 7 = 11.

Definition The descent set of T ∈ SYT(λ) is the set

{1 ≤ i < n ∶ i + 1 is in a lower row of T than i}.

Definition The major index of T ∈ SYT(λ) is the sum of the
descents.
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Type A Fake Degrees

Theorem (Lusztig–Stanley ’70’s) The type A fake degrees are

f S
λ

(q) = f λ(q) = ∑
T∈SYT(λ)

qmaj(T).

Equivalently, the number of copies of Sλ in the r th
graded piece of Rn is #{T ∈ SYT(λ) ∶ maj(T ) = r}.

Example f (5,3,1)(q) = q5(q18 + 2q17 + 4q16 + 5q15 + 8q14 + 10q13 +
13q12 + 14q11 + 16q10 + 16q9 + 16q8 + 14q7 + 13q6 +
10q5 + 8q4 + 5q3 + 4q2 + 2q + 1).
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Type A Fake Degrees

Example Visualizing the coefficients of q−5f (5,3,1)(q):

(1,2,4,5,8,10,13,14,16,16,16,14,13,10,8,5,4,2,1)

0 5 10 15

2

4

6

8

10

12

14

16



Enumerative Questions

Question

Are the fake degree coefficients log-concave?

Are they unimodal?

When are they zero? (Adin–Elizalde–Roichman
recently and independently asked this question about
the number of descents rather than maj.)
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Type A Internal Zeros Classification

Lemma (BKS 18+) The b(λ) + 1 coefficient of f λ(q) is zero if
and only if λ is a rectangle (not a row or column).

Question Are there other internal zeros? No:

Theorem (BKS 18+) The fake degree f λ(q) has internal zeros if
and only if λ is a rectangle (not a row or column).

Corollary (Best Primality Test!) n > 1 is prime if and only if f λ(q)
has no internal zeros for any λ ⊢ n.
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Proof Strategy

Start at the unique T ∈ SYT(λ) with minimal maj.

Find a map φ∶SYT(λ) − E(λ)→ SYT(λ) which only
slightly alters descent sets such that
maj(φ(T )) = maj(T ) + 1.

Iterate φ starting at minmaj(λ), ending at maxmaj(λ).
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Rotations

Definition A positive rotation for T ∈ SYT(λ) is an interval
[i , k] ⊂ [n] such that if T ′ ∶= (i , i + 1, . . . , k − 1, k) ⋅T ,
then T ′ ∈ SYT(λ) and there is some j for which

{j} = Des(T ′) −Des(T )
{j − 1} = Des(T ) −Des(T ′).

A negative rotation is exactly the same except
(i , i + 1, . . . , k − 1, k) is reversed.

Key Fact Applying rotations increases maj by 1!
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Rotations

Definition T ′ ∶= (i , i + 1, . . . , k − 1, k) ⋅T or
T ′ ∶= (k , k − 1, . . . , i + 1, i) ⋅T , T ′ ∈ SYT(λ), ∃j s.t. the
descent at j − 1 in T turned into a descent at j in T ′.

Example

1 4
2 5
3 9
6
7
8

Ð→
(543)

1 3
2 4
5 9
6
7
8

Des(T ) = {1,2,4,5,6,7}
Ð→Des(T ′) = {1,3,4,5,6,7}



Rotations

Rotations have a characterization using combinatorial
“patterns”

Rotations are plentiful: for SYT(5,4,4,2), only 24 out
of 81081 tableaux cannot be rotated

Lemma Every (non-exceptional) tableau which avoids the
pattern

1 2 ⋯ i
i + 1 z + 1
i + 2
⋮
z

admits a rotation.
Rotations preserve the number of descents, but
minmaj(λ) and maxmaj(λ) typically have different
numbers of descents.
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Block Rules

We have 5 additional “block rules” which add a descent
while incrementing maj by 1.

Example

B2:
1 2 3 4 5
6 7 8 9 10

11 12 13 ��ZZ14

⤿
1 3 4 5 10
2 7 8 9 13
6 11 12 ��ZZ14



Strong Poset

Each rotation rule and block rule has an
“inverse-transpose” version obtained from the
combinatorial descriptions by transposing the diagrams
and reversing the arrows

Definition The strong SYT poset P(λ) on SYT(λ) is obtained by
defining the cover relations to be rotations, block rules,
and their inverse-transposes.

Corollary If λ is not a rectangle, P(λ) is ranked (up to a shift) by
maj and has unique minimal and maximal elements.

Indeed, P(λ) is ranked by (des,maj−des) in the sense
that rotation rules increase this by (0,1) and block rules
increase this by (1,0).
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Strong Poset

Example For SYT(3,2,1):

          Strong       

(4 2 5 1 3 6)

(5 2 6 1 3 4) (4 3 5 1 2 6)

(5 3 6 1 2 4) (5 3 4 1 2 6)

(3 2 5 1 4 6)(6 3 4 1 2 5)(5 4 6 1 2 3)

(3 2 6 1 4 5)(5 2 4 1 3 6)(6 4 5 1 2 3)

(4 2 6 1 3 5)(6 2 4 1 3 5)

(6 2 5 1 3 4) (4 3 6 1 2 5)

(6 3 5 1 2 4)



Corollaries

Type A maj internal zeros classification

Answered Adin–Elizalde–Roichman des internal zeros
question for straight shapes (there are none)

maj−des internal zeros classification for free
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G(m,1,n) Fake Degrees

Theorem (Specht, ’35) The irreps of G(m,1,n) are indexed
(more-or-less canonically) by block diagonal skew
partitions λ with m blocks and n total cells.

Example n = 10,m = 3:

λ = ((3,2), (1,1), (3)) =

(The fake degrees are the same up to a q-shift
regardless of the indexing scheme.)

Theorem (Stembridge ’89) For λ = (λ(1), . . . , λ(m)) ⊢ n,

f S
λ(q)=f λ(q) = qb(α(λ))( n

α(λ)
)
qm

m

∏
i=1

f λ
(i)

(qm).
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G(m,1,n) Internal Zeros

Theorem (BKS 18+) Let λ be a sequence of m partitions with
∣λ∣ = n, and assume f λ(q) = ∑k bλ,kq

k . Then for k ∈ Z,
bλ,k ≠ 0 if and only if

k − b(α(λ))
m

− b(λ) ∈
⎧⎪⎪⎨⎪⎪⎩

0,1, . . . ,(n + 1

2
) −∑

c∈λ

hc

⎫⎪⎪⎬⎪⎪⎭
∖Dλ,

where Dλ is empty unless λ has a single non-empty

partition λ(i) which is a rectangle with at least two rows
and columns, in which case

Dλ =
⎧⎪⎪⎨⎪⎪⎩

1,(n + 1

2
) − ∑

c∈λ(i)
hc − 1

⎫⎪⎪⎬⎪⎪⎭
.



G(m,d ,n) Fake Degrees

Theorem (Clifford Theory) The irreps of G(m,d ,n) are
(more-or-less canonically) indexed by pairs ({λ}d , c)
where λ has m parts and n cells, {λ}d is its orbit under
the size d group of cyclic rotations, and c is an element
of the stabilizer of this orbit.

Example (Type D) For G(2,2,n), one can index by sets {λ,µ}
with ∣λ∣ + ∣µ∣ = n, at least when λ ≠ µ.

(In fact, f {λ}
d ,c(q) does not depend on c .)

Theorem (Stembridge ’89, BKS 18+)

f S
{λ},c

(q) = f {λ}
d

(q)
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d
⋅ [ n

α(λ)
]
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G(m,d ,n) Internal Zeros

Theorem (BKS 18+) Let λ be a sequence of m partitions with
∣λ∣ = n ≥ 1, let d ∣ m, and let {λ}d be the orbit of λ
under the group Cd of (m/d)-fold cyclic rotations.
Then b{λ}d ,k ≠ 0 if and only if for some µ ∈ {λ} we have

∣µ(1)∣ +⋯ + ∣µ(m/d)∣ > 0 and

k − b(α(µ))
m

− b(µ) ∈

{0,1, . . . , ∣µ(1)∣ +⋯ + ∣µ(m/d)∣

+ (n
2
) −∑

c∈µ

hc} ∖Dµ;d .



G(m,d ,n) Internal Zeros

Theorem (Continued.) Here Dµ;d is empty unless either

1. µ has a partition µ of size n; or

2. µ has a partition µ of size n − 1 and

∣µ(1)∣ +⋯ + ∣µ(m/d)∣ = 1,

where in both cases µ must be a rectangle with at least
two rows and columns. In case (1), we have

Dµ;d ∶=
⎧⎪⎪⎨⎪⎪⎩

1,(n + 1

2
) −∑

c∈µ

hc − 1

⎫⎪⎪⎬⎪⎪⎭
,

and in case (2) we have

Dµ;d ∶=
⎧⎪⎪⎨⎪⎪⎩

1,(n
2
) −∑

c∈µ

hc

⎫⎪⎪⎬⎪⎪⎭
.



Further work

Probability: coefficients of f λ(q) are generally
asymptotically normal . (To appear!)

When does ∑T∈SYT(λ/µ) q
maj(T) have internal zeros?

(Mostly done; 5 extra block rules)

Give a general, representation-theoretic interpretation of
rotation rules

The same for block rules?

Unimodality classification conjecture

Study deformed Gaussian binomial coefficients [n
α
]
q;d

Conceptual explanation for primality corollary/why are
rectangles special?
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Thanks!

THANKS!


