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(This lecture was given in the Applied Algebraic Geometry topics course at the University of Washington
on April 5th, 2017. It essentially follows [CLO15, §2.1-2.2].)

1. Motivation: Ideal Membership

Question 1.1. Let f ∈ k[x1, . . . , xn] and let I ⊂ k[x1, . . . , xn] be an ideal. How can we check if f ∈ I?

Remark 1.2. When n = 1, we have the following method. (Assume I 6= {0}.)

(1) Find g(x) such that I = 〈g(x)〉.
(2) Apply division algorithm to get f(x) = g(x)q(x) + r(x) with r = 0 or deg r < deg g.
(3) f ∈ I if and only if r = 0.

For (1), the set of possible g(x) is the set of minimal-degree elements of I. If we’re instead given I =
〈g1(x), . . . , gm(x)〉, the Euclidean algorithm provides us with g(x).

Remark 1.3. When n > 1, things get complicated. (1) breaks down immediately; e.g. when n = 2, I = 〈x, y〉
can’t be generated by a single element. (2) must then be modified to work with multiple g(x)’s simultaneously.
Chapter 2 works towards a generalization of (3) to n variables. The second half of today’s talk will focus on
(2). The first half will lay some groundwork.
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2. Monomial Orderings

2.1. Motivation.

Remark 2.1. Implicit in the 1-variable case is ordering monomials as

1 < x < x2 < x3 < · · · .

This ordering shows up in the division algorithm by looking at leading monomials. Useful properties of this
ordering include the following.

Property Explanation Usefulness

Total ordering Any two monomials are comparable “Leading term” makes sense
Well-ordering Any (possible infinite) set of monomials

has a unique minimum
Division algorithm terminates

Compatible with
multiplication

xi < xj implies xaxi < xaxj Can predictably kill leading terms

The third property implies LT(xap(x)) = xa LT(p(x)). This is important when we subtract off a multiple of
the denominator to kill the current leading term in the division algorithm.

Remark 2.2. Sometimes it’s convenient to think of the exponents of a monomial as a vector, as in

x31x
17
2 x4 ∈ k[x1, . . . , x5]⇔ (3, 17, 0, 1, 0) ∈ Z5

≥0.

If α := (3, 17, 0, 1, 0), we write

xα := x31x
17
2 x

0
3x

1
4x

0
5.

2.2. Definition.

Definition 2.3. A monomial ordering > on k[x1, . . . , xn] is a relation > on Zn≥0, or equivalently a relation

> on the monomials {xα : α ∈ Zn≥0}, satisfying:

(i) > is a total (or linear) order on Zn≥0.

(ii) If α > β and γ ∈ Zn≥0, then α+ γ > β + γ.

(iii) > is a well-ordering.

Remark 2.4. Property (i) means that > is transitive and, for every α, β ∈ Zn≥0, exactly one of the following
is true:

α > β, α = β, β > α.

Property (iii) means that for every non-empty A ⊂ Zn≥0, there is an element α ∈ A such that for every β ∈ A
with β 6= α, β > α.

• Equivalently, any strictly decreasing sequence

α(1) > α(2) > · · ·

eventually terminates. (This works for arbitrary totally ordered sets.)
• Equivalently, α ≥ 0 for all α ∈ Zn≥0. (This uses (ii).)

2.3. Examples.

Example 2.5. The ordering 1 < x < x2 < x3 < · · · is the unique monomial ordering on k[x].

Definition 2.6 (Lexicographic order). For α, β ∈ Zn≥0, we say

α >lex β ⇔ leftmost non-zero entry of α− β is positive.
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Example 2.7. In increasing order for n = 2, we have

(0, 0) <lex (0, 1) <lex (0, 2) <lex · · · <lex

(1, 0) <lex (1, 1) <lex (1, 2) <lex · · · <lex

(2, 0) <lex (2, 1) <lex (2, 2) <lex · · · .

Definition 2.8 (Graded lexicographic order). For α, β ∈ Zn≥0, we say

α >grlex β ⇔

|α| :=
n∑
i=1

αi > |β| :=
n∑
i=1

βi or |α| = |β| and α >lex β.

Example 2.9. (1, 2, 3) >grlex (3, 2, 0) while (1, 2, 3) <lex (3, 2, 0).

Definition 2.10 (Graded reverse lex order). For α, β ∈ Zn≥0, we say

α >grevlex β ⇔

|α| :=
n∑
i=1

αi > |β| :=
n∑
i=1

βi or |α| = |β| and the rightmost non-zero entry of α− β is negative.

Example 2.11. We have:

• (1, 2, 3) >grevlex (3, 2, 0).
• (1, 2, 3) <grevlex (3, 2, 1), and (1, 2, 3) <grlex (3, 2, 1).
• (1, 3, 1) >grevlex (2, 1, 2), and (1, 3, 1) <grlex (2, 1, 2).

Remark 2.12. lex, grlex, and grevlex are all monomial orderings. lex is particularly simple, but it has no
relationship with degrees. grlex fixes this issue. grevlex in practice tends to give nicer answers. grlex and
grevlex agree for n = 1 or 2, and they both give x1 > · · · > xn, though they differ for n ≥ 3.

All three orderings depend on first choosing an ordering of x1, x2, . . . , xn. The descriptions above all use
x1 > x2 > · · · > xn, though any of the other n! choices could be used. Unless otherwise specified, this is
the default convention. To go from grlex to grevlex, for same-degree monomials, we reverse the ordering of
x1, . . . , xn and we reverse >lex.

Example 2.13. Let f = 4xy2z + 4z2 − 5x3 + 7x2z2 ∈ k[x, y, z]. We can write the terms of f in decreasing
order with respect to any monomial ordering.

Monomial ordering Decreasing f

lex −5x3 + 7x2z2 + 4xy2z + 4z2

grlex 7x2z2 + 4xy2z − 5x3 + 4z2

grevlex 4xy2z + 7x2z2 − 5x3 + 4z2

3. Terminology

Definition 3.1. Let f =
∑
α cαx

α be a nonzero polynomial in k[x1, . . . , xn] and let > be a monomial order.

(i) The multidegree of f is

multideg(f) := max(α ∈ Zn≥0 : cα 6= 0) ∈ Zn≥0.

(ii) The leading coefficient of f is

LC(f) := cmultideg(f) ∈ k×.
(iii) The leading monomial of f is

LM(f) := xmultideg(f).

(iv) The leading term of f is

LT(f) := LC(f) · LM(f).
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Example 3.2. When f = 4xy2z + 4z2 − 5x3 + 7x2z2 ∈ k[x, y, z] and > is >lex, we have

multideg(f) = (3, 0, 0),

LC(f) = −5,

LM(f) = x3,

LT(f) = −5x3.

Lemma 3.3. Let f, g ∈ k[x1, . . . , xn] be non-zero polynomials. Then:

(i) multideg(fg) = multideg(f) + multideg(g).
(ii) LT(fg) = LT(f) LT(g).

(iii) If f + g 6= 0, then multideg(f + g) ≤ max{multideg(f),multideg(g)}. If, in addition, multideg(f) 6=
multideg(g), then equality occurs.
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