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Global conjugacy classes

Question (Sundaram)

Fix an S,-conjugacy class 1. Let S, act by conjugation on
C-linearly. For which u does every Sp-irreducible appear in this
representation?

» Sundaram gave a conjectural answer (for n # 4,8, 1 must
have at least two parts, with all parts odd and distinct)
subject to a classification of which irreducibles appear when
p=(n) (all x* except A € {(n—1,1),(2,1"72)} when n is
odd and A € {(n—1,1),(1")} when n is even)

» When p = (n), this representation is 1T§'; where C, := ((04))
with 0, :=(12 --- n)
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Combinatorial representation theory

» Define x": C, — C* by x"(cX) := wkr
> Set
axr = <XrT"27,7X)\>

Theorem (Kraskiewicz—\WWeyman)
Let \=n. Then

ax,=#{T € SYT(A) : maj(T) =, r}.

» Related to work of Thrall, Klyachko, Stembridge, Lusztig,
Stanley, ...



Major index on standard tableaux

» SYT(A/v) := {standard Young tableaux of shape A\/v}



Major index on standard tableaux

» SYT(A/v) := {standard Young tableaux of shape A\/v}
» For T € SYT(M\/v), set

Des(T) :={i:i+1 appears in a lower row than i in T}



Major index on standard tableaux

» SYT(A/v) := {standard Young tableaux of shape A\/v}
» For T € SYT(M\/v), set
Des(T) :={i:i+1 appears in a lower row than i in T}

maj(T):= Y i

icDes(T)



Major index on standard tableaux

» SYT(A/v) := {standard Young tableaux of shape A\/v}
» For T € SYT(M\/v), set

Des(T) :={i:i+1 appears in a lower row than i in T}

maj(T):= Y i

icDes(T)

» Example: \/v = (4,3,2)/(1),



Major index on standard tableaux

» SYT(A/v) := {standard Young tableaux of shape A\/v}
» For T € SYT(M\/v), set

Des(T) :={i:i+1 appears in a lower row than i in T}

maj(T):= Y i

icDes(T)

» Example: \/v = (4,3,2)/(1),

-

T =

[ee)[e)]

o[~

2
3




Major index on standard tableaux

» SYT(A/v) := {standard Young tableaux of shape A\/v}
» For T € SYT(M\/v), set

Des(T) :={i:i+1 appears in a lower row than i in T}

maj(T):= Y i

icDes(T)

» Example: \/v = (4,3,2)/(1),

T =

[ee)[e)]




Major index on standard tableaux

» SYT(A/v) := {standard Young tableaux of shape A\/v}
» For T € SYT(M\/v), set

Des(T) :={i:i+1 appears in a lower row than i in T}

maj(T):= Y i

icDes(T)
» Example: \/v = (4,3,2)/(1),
T J1][6]7]
21418
315

has Des(T) = {1,2,4,7} and maj(T) =1+4+2+4+7=14
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Restatement of earlier conjecture:

Conjecture (Sundaram)

Let A\t=n>1. Then ayo = 0 if and only if
» A= (n—-1,1), or
» A= (2,1"72) ifn is odd, or
» A= (1") if nis even

Related earlier work:

Theorem (Klyachko)

Let \-n> 1. Then ay1 = 0 if and only if
» A=1(2,2), or A =(2,2,2), or
» A= (n), or
» A= (1") when n>2
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Estimating a) ,

Theorem (S.)
Forall \Fn>1 and all r,

ar 1 < 2n3/2
A n| = VFA

» Proof uses Foulkes' formula, Ramanujan sums, x*((¢"/*)), the

Fomin—Lulov bound, Stirling's approximation

Theorem (S.)
Let A= n > 81 with A1, \; < n—7. Then f* > n® and

1

axr 1
n2

fA n

» Proof uses “opposite hook products” arising independently in

recent work of Morales—Pak—Panova



Results for ay ,

Corollary (S.)
Let \'-n> 1. Then ay, = 0 if and only if

» A=(2,2), r=1,3; o0r A\=(2,2,2), r=1,5; oror A = (3,3),
r=2,4; or
» A=(n—1,1) and r =0; or
s A= (2,172) = 0 /.fn/.sodd
g if n is even; or

» A=(n), re{l,...,n—1}; or

)\:(]_n)'rE {L"';n_l} lntSOdd
{0,...,n—1} = {5} ifniseven.

v
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Results for ay ,

Corollary

Sundaram’s conjecture is true! Hence, global conjugacy class
classification holds.

Corollary

The statistic “maj mod n” is intuitively uniformly distributed as
n— oo

Question
Can we remove “mod n”?
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Asymptotic normality: definition

» Let X be a random variable with mean i, variance 2. Let
X* = (X —u)/o.

> Let Xq, X3,... be a sequence of random variables. Let Xy
have cumulative distribution function Fy(t) := P[Xy < t].

Definition
X1, X2, ... is asymptotically normal if for all t € R,

lim Fy(t) = F(t)

N—o0
where F(t) is the CDF of the standard normal distribution.

» If X has a density function f(t), the characteristic function
E[e™X] of X is the Fourier transform of f(t)
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The “original” asymptotic normality result:

Theorem (de Moivre, Laplace)

Let Xy be the “cardinality” statistic on subsets of [N]. Then
X1, Xa, ... is asymptotically normal.

More generally:
Theorem (Central limit theorem)

Let Xy be the average of N i.i.d. random variables with finite
variance. Then Xy, Xo, ... is asymptotically normal.
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Asymptotic normality: criteria

We can use characteristic functions:

Theorem (Lévy's continuity theorem)

A sequence X1, Xz, ... of random variables is asymptotically
normal if and only if for all t € R,

lim E[e™W] = et
N—oo

There's a classic, straightforward proof of the CLT using
characteristic functions.
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Or, we can look at moments separately:

Theorem (Frechét—Shohat theorem)

A sequence X1, X, ... of random variables (with density functions
that decay at least exponentially in the tails) is asymptotically
normal if and only if for all d € Z>1 we have

0 ifd is odd

A ELOG) ] = {(d — 1)1l ifd is even
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Definition _
Let aft(A) := |A| — max{A1, A1}

Theorem (Billey—Konvalinka-S.)

Suppose X)X s a sequence of partitions. Let Xy be the
random variable corresponding to the major index statistic on
SYT(AM). Then, the sequence X1, Xa, ... is asymptotically
normal if and only if aft(A(M)) = o0 as N — co.



Asymptotic normality and standard tableaux

Example
AV = (50,2), aft(A\(D)) =2
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Asymptotic normality and standard tableaux

Example
A2 = (50,3,1), aft(A\?)) = 4
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Asymptotic normality and standard tableaux

Example
A3 = (8,8,7,6,5,5,5,2,2), aft(\®)) = 39

le25
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Corollary (Chen-Wang—-Wang)
Using \N) = (N, N), the coefficients of the g-Catalan numbers
[N+11]q (3 )q are asymptotically normal.

» Proof of theorem uses cumulants, Stanley’'s formula for
SYT(A)™3(q), hook length estimates, method of moments

» SYT(A)™3(q) connects to principal specializations of sy; type
A coinvariant algebra and Lusztig—Stanley theorem;
GL,(IF4)-representation theory by work of Green, Steinberg
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Further work

v

diag()) case settled; generalizes earlier work of
Canfield—Janson—Zeilberger, Diaconis, Mann—Whitney, . ..

v

Conjectured classification when
#{T € SYT(N) : maj(T) =k} =0

Similar conjectures for unimodality, log-concavity

v

v

Progress towards a local limit theorem for SYT(\)™(q)

v

General skew shapes?



Thanks!

FIN.
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