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Global conjugacy classes

Question (Sundaram)

Fix an Sn-conjugacy class µ. Let Sn act by conjugation on µ
C-linearly. For which µ does every Sn-irreducible appear in this
representation?

I Sundaram gave a conjectural answer (for n 6= 4, 8, µ must
have at least two parts, with all parts odd and distinct)
subject to a classification of which irreducibles appear when
µ = (n) (all χλ except λ ∈ {(n − 1, 1), (2, 1n−2)} when n is
odd and λ ∈ {(n − 1, 1), (1n)} when n is even)

I When µ = (n), this representation is 1↑SnCn
where Cn := 〈(σn)〉

with σn := (1 2 · · · n)
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Combinatorial representation theory

I Define χr : Cn → C× by χr (σkn ) := ωkr
n

I Set
aλ,r := 〈χr↑SnCn

, χλ〉

Theorem (Kraskiewicz–Weyman)

Let λ ` n. Then

aλ,r = #{T ∈ SYT(λ) : maj(T ) ≡n r}.

I Related to work of Thrall, Klyachko, Stembridge, Lusztig,
Stanley, . . .
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Major index on standard tableaux

I SYT(λ/ν) := {standard Young tableaux of shape λ/ν}

I For T ∈ SYT(λ/ν), set

Des(T ) := {i : i + 1 appears in a lower row than i in T}

maj(T ) :=
∑

i∈Des(T )

i

I Example: λ/ν = (4, 3, 2)/(1),

T = 1 6 7
2 4 8
3 5

has Des(T ) = {1, 2, 4, 7} and maj(T ) = 1 + 2 + 4 + 7 = 14
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Sundaram’s conjecture, Klyachko’s theorem

Restatement of earlier conjecture:

Conjecture (Sundaram)

Let λ ` n > 1. Then aλ,0 = 0 if and only if

I λ = (n − 1, 1), or

I λ = (2, 1n−2) if n is odd, or

I λ = (1n) if n is even

Related earlier work:

Theorem (Klyachko)

Let λ ` n > 1. Then aλ,1 = 0 if and only if

I λ = (2, 2), or λ = (2, 2, 2), or

I λ = (n), or

I λ = (1n) when n > 2
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Estimating aλ,r
Theorem (S.)

For all λ ` n ≥ 1 and all r ,∣∣∣∣aλ,rf λ
− 1

n

∣∣∣∣ ≤ 2n3/2√
f λ

I Proof uses Foulkes’ formula, Ramanujan sums, χλ((`n/`)), the
Fomin–Lulov bound, Stirling’s approximation

Theorem (S.)

Let λ ` n ≥ 81 with λ1, λ
′
1 < n − 7. Then f λ ≥ n5 and∣∣∣∣aλ,rf λ
− 1

n

∣∣∣∣ < 1

n2
.

I Proof uses “opposite hook products” arising independently in
recent work of Morales–Pak–Panova
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Results for aλ,r

Corollary (S.)

Let λ ` n > 1. Then aλ,r = 0 if and only if

I λ = (2, 2), r = 1, 3; or λ = (2, 2, 2), r = 1, 5; or or λ = (3, 3),
r = 2, 4; or

I λ = (n − 1, 1) and r = 0; or

I λ = (2, 1n−2), r =

{
0 if n is odd
n
2 if n is even; or

I λ = (n), r ∈ {1, . . . , n − 1}; or

I λ = (1n), r ∈

{
{1, . . . , n − 1} if n is odd

{0, . . . , n − 1} − {n2} if n is even.



Results for aλ,r

Corollary

Sundaram’s conjecture is true!

Hence, global conjugacy class
classification holds.

Corollary

The statistic “maj mod n” is intuitively uniformly distributed as
n→∞

Question
Can we remove “mod n”?
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Asymptotic normality: definition

I Let X be a random variable with mean µ, variance σ2. Let
X ∗ := (X − µ)/σ.

I Let X1,X2, . . . be a sequence of random variables. Let X ∗N
have cumulative distribution function FN(t) := P[X ∗N ≤ t].

Definition
X1,X2, . . . is asymptotically normal if for all t ∈ R,

lim
N→∞

FN(t) = F (t)

where F (t) is the CDF of the standard normal distribution.

I If X has a density function f (t), the characteristic function
E[e itX ] of X is the Fourier transform of f (t)
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Asymptotic normality: examples

The “original” asymptotic normality result:

Theorem (de Moivre, Laplace)

Let XN be the “cardinality” statistic on subsets of [N]. Then
X1,X2, . . . is asymptotically normal.

More generally:

Theorem (Central limit theorem)

Let XN be the average of N i.i.d. random variables with finite
variance. Then X1,X2, . . . is asymptotically normal.
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Asymptotic normality: criteria

We can use characteristic functions:

Theorem (Lévy’s continuity theorem)

A sequence X1,X2, . . . of random variables is asymptotically
normal if and only if for all t ∈ R,

lim
N→∞

E[e itX
∗
N ] = e−t

2

There’s a classic, straightforward proof of the CLT using
characteristic functions.
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Asymptotic normality: criteria

Or, we can look at moments separately:

Theorem (Frechét–Shohat theorem)

A sequence X1,X2, . . . of random variables (with density functions
that decay at least exponentially in the tails) is asymptotically
normal if and only if for all d ∈ Z≥1 we have

lim
N→∞

E[(X ∗N)d ] =

{
0 if d is odd

(d − 1)!! if d is even
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Asymptotic normality and standard tableaux

Definition
Let aft(λ) := |λ| −max{λ1, λ̃1}.

Theorem (Billey–Konvalinka–S.)

Suppose λ(1), λ(2), . . . is a sequence of partitions. Let XN be the
random variable corresponding to the major index statistic on
SYT(λ(N)). Then, the sequence X1,X2, . . . is asymptotically
normal if and only if aft(λ(N))→∞ as N →∞.
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Asymptotic normality and standard tableaux

Example

λ(1) = (50, 2), aft(λ(1)) = 2
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Asymptotic normality and standard tableaux

Example

λ(2) = (50, 3, 1), aft(λ(2)) = 4
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Asymptotic normality and standard tableaux

Example

λ(3) = (8, 8, 7, 6, 5, 5, 5, 2, 2), aft(λ(3)) = 39

200 300 400 500 600 700 800 900 1000
0

5e24

1e25
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2e25



Asymptotic normality and standard tableaux

Corollary (Chen–Wang–Wang)

Using λ(N) = (N,N), the coefficients of the q-Catalan numbers
1

[N+1]q

(2N
N

)
q

are asymptotically normal.

I Proof of theorem uses cumulants, Stanley’s formula for
SYT(λ)maj(q), hook length estimates, method of moments

I SYT(λ)maj(q) connects to principal specializations of sλ; type
A coinvariant algebra and Lusztig–Stanley theorem;
GLn(Fq)-representation theory by work of Green, Steinberg
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Further work

I diag(λ) case settled; generalizes earlier work of
Canfield–Janson–Zeilberger, Diaconis, Mann–Whitney, . . .

I Conjectured classification when
#{T ∈ SYT(λ) : maj(T ) = k} = 0

I Similar conjectures for unimodality, log-concavity

I Progress towards a local limit theorem for SYT(λ)maj(q)

I General skew shapes?
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Thanks!
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