IRREDUCIBLE DECOMPOSITIONS

JOSH SWANSON

CONTENTS

1. Irreducible Decompositions

References

(This lecture was given in the Applied Algebraic Geometry topics course at the University of Washington on May 1st, 2017. It essentially follows [CLO15, §4.6].)

1. IRREDUCIBLE DECOMPOSITIONS

Example 1.1. We have $V(xy) = V(x) \cup V(y)$. Can we break V(x) down further, usefully? (Draw.) We give a formal generalization of this example today.

Remark 1.2. Recall the following version of Hilbert's Basis Theorem. Every ascending chain of ideals

$$I_1 \subset I_2 \subset \cdots \subset k[x_1, \dots, x_n]$$

eventually stabilizes, i.e. $\exists N$ such that $I_N = I_{N+1} = \cdots$.

Corollary 1.3. Any descending chain of affine varieties

 $V_1 \supset V_2 \supset \cdots \supset k^n$

eventually stabilizes, i.e. $\exists N \text{ such that } V_N = V_{N+1} = \cdots$.

Proof. Apply \mathcal{I} , then \mathcal{V} , noting $\mathcal{V}(\mathcal{I}(V_i)) = \overline{V_i} = V_i$.

Theorem 1.4. Let $V \subset k^n$ be an affine variety. Then V can be written as a finite union

$$V = V_1 \cup \cdots \cup V_m$$

where each V_i is irreducible.

Proof. If V is irreducible, then we're done, so suppose V is reducible. Write $V = V_1 \cup V'_1$ where V_1, V'_1 are varieties such that $V_1 \neq V \neq V'_1$. If V_1, V'_1 are each irreducible, then we're done, so suppose V_1 is reducible. Hence write $V_1 = V_2 \cup V'_2$ with $V_2 \neq V_1 \neq V'_2$. Repeating this, we either terminate eventually or we get an infinite chain

$$V \supseteq V_1 \supseteq V_2 \supseteq \cdots,$$

a contradiction.

Example 1.5. We have $V(xy) = V(x) \cup V(y) \cup V(x, y)$, but V(x, y) is "unnecessary."

1

3

Date: May 1, 2017.

Theorem 1.6. Let $V \subset k^n$ be an affine variety. Then V has a minimal decomposition

$$V = V_1 \cup \dots \cup V_m$$

where each V_i is an irreducible variety with $V_i \subsetneq V_j$ for all $I \neq j$. Up to reordering, this decomposition is unique.

Proof. Existence follows from the previous theorem after removing parts contained in others. For uniqueness, suppose we have another minimal decomposition

$$V = V_1' \cup \cdots \cup V_l'.$$

Fix i and note

$$V_i = V_i \cap V = V \cap (V'_1 \cup \cdots \cup V'_l) = (V \cap V'_1) \cup \cdots \cup (V \cap V'_l)$$

Since V_i is irreducible, $V_i = V_i \cap V'_j$ for some j, so $V_i \subset V'_j$. By the symmetry of this argument, we have some k such that $V'_j \subset V_k$. Hence $V_i \subset V_k$, so i = k and $V_i = V'_j$. This procedure results in a bijection

$$\{V_1,\ldots,V_m\} \leftrightarrow \{V'_1,\ldots,V'_l\}$$

In particular, l = m and the result follows.

Corollary 1.7. If $k = \overline{k}$, every $I = \sqrt{I}$ has a minimal decomposition

$$I = P_1 \cap \cdots \cap P_r$$

for P_i prime with $P_i \subsetneq P_j$ for all $i \neq j$.

Proof. Apply the \mathcal{I} and \mathcal{V} bijections.

Remark 1.8. In fact, the corollary holds even if $k \neq \overline{k}$.

Theorem 1.9. If we have a minimal decomposition

$$I = \sqrt{I} = P_1 \cap \dots \cap P_r \subset k[x_1, \dots, x_n]$$

with P_i prime, $P_i \subsetneq P_j$ for all $i \neq j$. Then

$$\{P_1, \ldots, P_r\} = \{I : f \text{ proper, prime } | f \in k[x_1, \ldots, x_n] \}.$$

Proof. First, some ingredients.

Fact	Intuition
$(\cap_{i=1}^{n}I_i): J = \cap_{i=1}^{n}(I_i:J)$	$(\cup_i V_i) - V = \cup_i (V_i - V)$
$f \in P \Rightarrow P : f = \langle 1 \rangle$	$W := V(f) \supset V(P)$ implies $V(P) -$
	$V(f) = \varnothing$
$f \notin P \Rightarrow P : f = P$	$W := V(f) \not\supseteq V(P)$ implies
	$\overline{V(P) - W} = V(P)$
If $P = \bigcap_{i=1}^{n} I_i$, then $P = I_i$ for some i	$V = V_1 \cup \cdots \cup V_n$ implies $V = V_i$ for
	some i

Now, for (\supset) , suppose I : f is proper and prime. First by (1),

$$I: f = (\cap_i P_i): f = \cap_i (P_i: f).$$

By (4) since I : f is prime, $I : f = P_i : f$ for some *i*. By (2) and (3) since I : f is proper, $P_i : f = P_i$. Hence $I : f = P_i : f = P_i$.

For (\supset) , fix *i* and pick $f \in (\bigcap_{j \neq i} P_j) - P_i$, which is $\neq \emptyset$ by minimality. Hence by (3), $P_i : f = P_i$, and by (2), $P_j : f = \langle 1 \rangle$ for all $j \neq i$. Thus $I : f = P_i$.

Example 1.10. One may verify the following irreducible decomposition.

$$I = \langle xz - y^2, x^3 - yz \rangle$$

= $\langle x, y \rangle \cap \langle xz - y^2, x^3 - yz, x^2y - z^2 \rangle$
= $(I : x^2y - z^2) \cap (I : x).$

Remark 1.11. There are algorithms for

- deciding if an ideal is prime, or if an affine variety is irreducible;
- finding the irreducible decomposition of a variety or radical ideal.

They're not discussed in [CLO15]; see the references at the end of [CLO15, §4.6]

References

[CLO15] David A. Cox, John Little, and Donal O'Shea. *Ideals, varieties, and algorithms*. Undergraduate Texts in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational algebraic geometry and commutative algebra.