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1. Statement of the Main Result

Definition 1.1. The descent set of a standard tableaux T ∈ SYT(λ), λ ` n is the set

DesT := {i ∈ [n− 1] : i+ 1 is in a lower row than i}

using English notation.

Example 1.2. We have:

• Des(1/2/3/4/5) = {1, 2, 3, 4};
• Des(125/346) = {2, 5}.

Definition 1.3. The major index of T is

majT :=
∑

i∈Des(T )

i.

Question 1.4. Let aλ,r := #{T ∈ SYT(λ) : majT ≡n r}. When is aλ,r 6= 0? (Is there a good asymptotic
for aλ,r?)

Theorem 1.5 (Klyachko74, Kraskiewicz-Weyman01). Pick λ ` n ≥ 1. Then aλ,1 = 0 if and only if

• λ = (2, 2), or λ = (2, 2, 2), or
• λ = (n) with n > 1, or λ = (1n) with n > 2.
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Remark 1.6. Sundaram ’16 conjectured an answer for the r = 0 case. She was interested in the following
question: let Sn act on permutations of cycle type λ by conjugation. For which λ does the resulting module
contain all irreducible representations (λ is a global class)?

She proved a sufficient condition:

• λ is a global class if n > 8, λ has at least 2 parts, all parts are distinct, and all parts other than 1 are
odd primes.

She conjectured a complete classification:

• (Say n > 8.) λ is a global class if and only if λ has at least 2 parts, all odd and distinct.

She was able to prove the classification subject to the determination of when aλ,0 = 0.

Theorem 1.7 (Swanson, 2017). Pick λ ` n ≥ 1. Then aλ,r = 0 if and only if

• λ = (2, 2), r = 1, 3; or λ = (2, 2, 2), r = 1, 5; or λ = (3, 3), r = 2, 4;
• λ = (n− 1, 1) and r = 0;

• λ = (2, 1n−2), r =

{
0 if n is odd
n
2 if n is even;

• λ = (n), r ∈ {1, . . . , n− 1};

• λ = (1n), r ∈

{
{1, . . . , n− 1} if n is odd

{0, . . . , n− 1} − {n2 } if n is even.

Remark 1.8. Marianne Johnson (2007) gave an alternate proof of Klyachko’s theorem by constructing
appropriate tableaux, though she used Kraskiewicz-Weyman’s observation about gcd(n, r), and I don’t find
the argument sheds light on why the result should be true. Kov’acs-Stöhr (2006) gave a different proof of
Klyachko’s theorem using free Lie algebras and the Littlewood-Richardson rule. Their argument gives the
statement aλ,1 6= 0⇒ aλ,1 ≥ n

6 − 1.

The argument I’ll sketch gives a more conceptual explanation using Sn-representation theory valid for all
r while also giving a vastly stronger estimate.

2. Representation Theory Connection

Notation 2.1. σn := (1 2 · · · n) ∈ Sn, Cn := 〈σn〉, λ ` n, Sλ is a Specht module. Further,

χr : Cn → C×

σi 7→ ωrin

where ωn is any fixed primitive nth root of unity.

Theorem 2.2 (KW-01). We have

multiplicity of Sλ in χr↑SnCn = aλ,r = multiplicity of χr in Sλ↓SnCn .

Consequently, aλ,r depends only on λ and gcd(n, r).

Remark 2.3. Thus “almost all” irreps appear in each χr↑SnCn or Sλ↓SnCn . Klyachko ’74 was actually motivated
by the study of the nth homogeneous piece of a free Lie algebra. (Adriano wrote a nice long article on this

topic in 1990.) Klyachko showed that such a module is Schur-Weyl dual to χ1↑SnCn . His proof found faithful

representations of Cn in Sλ↓SnCn and does not clearly generalize to cover Sundaram’s r = 0 case.

We begin by crystallizing a simple observation that has appeared in numerous guises in the literature.
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Theorem 2.4 (Foulkes ’72). Pick λ ` n ≥ 1, r ∈ Z/n. Then

chχr↑SnCn=
1

n

∑
`|n

c`(r)p(`n/`)

where

c`(r) = a Ramanujan sum

:= sum of rth powers of primitive `th roots of unity

= µ(`/(`, r))φ(`)/φ(`/(`, r)).

Example 2.5. c4(2) = i2 + (−i)2 = −2.

Example 2.6. We have

• r = 1: chχ1↑SnCn= 1
n

∑
``n µ(`)p(`n/`)

• r = 0: chχ0↑SnCn= 1
n

∑
``n φ(`)p(`n/`).

Theorem 2.7 (Desarmenien ’90). Write χλ for the character of Sλ, fλ := χλ(1). Pick λ ` n ≥ 1, r ∈ Z/n.
Then

aλ,r
fλ

=
1

n
+

1

n

∑
`|n
` 6=1

χλ(`n/`)

fλ
c`(r).

More generally, we have the following simple result, which is essentially implicit in, for instance, EC2,
p. 351.

Proposition 2.8. Let H ≤ Sn and let M be an H-module with character χH . Then

chM↑SnH =
1

|H|
∑
µ`n

cµpµ

and, for all λ ` n,

multiplicity of Sλ in M↑SnH =
1

|H|
∑
µ`n

cµχ
λ(µ)

where

cµ :=
∑
h∈H

cycle type of h is µ

χM (h).

Remark 2.9. Letting M = χr gives Foulkes and Desarmenien’s results immediately. More generally, one
could for instance replace (1 2 · · · n) with (1 2 · · · k), or even with other cycle types. Analogues of my methods
should generalize to these cases, so long as the order of the cyclic group is not large compared to n, and is a
potential avenue for further research.

3. Proof Outline

Remark 3.1. The idea is simple: use Desarmenien’s formula and show χλ(`n/`)
fλ

is “small.”

Theorem 3.2 (Fomin-Lulov ’95). Pick λ ` n = `s. Then

|χλ(`s)| ≤ s!`s

(n!)1/`
(fλ)1/`.

Example 3.3. When ` = 1, s = n, and the LHS and RHS are each fλ.

Their inequality is based on the following generalization of the hook length formula.
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Theorem 3.4 (Fomin-Lulov ’95). Pick λ ` n = `s. Then

|χλ(`s)| =

∏
i∈[n]
i≡`0

i∏
c∈λ
hc≡`0

hc

if λ can be written as s successive ribbons each of length `, and 0 otherwise.

Example 3.5. When ` = 1, we recover the hook length formula.

Remark 3.6. Consequently,

|χλ(`s)|
fλ

=

∏
i∈[n]
i6≡`0

i∏
c∈λ
hc 6≡`0

hc

or 0.

I have an alternate proof of this formula in the tradition of Stanley rather than James and Kerber (found
before unearthing Fomin-Lulov). The following lemma is key.

Lemma 3.7. Pick λ ` n ≥ 1 with fλ ≥ n3. Then aλ,r 6= 0.

Proof. Combine Desarmenien’s formula, the Fomin-Lulov bound, Stirling’s approximation, and a little careful
bookkeeping. �

4. When is fλ < n3?

Definition 4.1. For c ∈ λ, the opposite hook length hopc is (draw picture).

Example 4.2. If λ = (3, 2) the hook length tableau is 431/21 while the opposite hook length tableau is
123/23. It’s easy to see that

∑
c∈λ hc =

∑
c∈λ h

op
c .

Proposition 4.3.
∏
c∈λ h

op
c ≥

∏
c∈λ hc. Moreover, equality occurs if and only if λ is a rectangle.

Example 4.4. For λ = (3, 2), the products are 4 · 3 · 1 · 2 · 1 < 1 · 2 · 3 · 2 · 3.

Proof. Algebraic. Would be interesting to have a combinatorial or representation-theoretic explanation. �

Definition 4.5. The diagonal preorder is defined by

λ .diag µ⇔ ∀i ∈ Z>0,#{c ∈ λ : hopc ≥ i} ≤ #{d ∈ µ : hopd ≥ i}.

Remark 4.6. The diagonal preorder is reflexive and transitive, but not anti-symmetric, so it is a preorder
and not a partial order. Its key property is

λ .diag µ⇒
∏
c∈λ

hopc ≤
∏
d∈µ

hopd .

Definition 4.7. The diagonal excess of λ is

N(λ) := |λ| −#{hopc : c ∈ λ}.
For instance, N((3, 2)) = 5− 3 = 2.

Theorem 4.8. Suppose 2N(λ)+1 ≤ n. Then the hook (n−N(λ), 1N(λ)) is maximal for the diagonal preorder
on partitions of n with diagonal excess N(λ). Furthermore,

fλ ≥ 1

N(λ) + 1

(
n

N(λ)

)
.

Remark 4.9. Consequently, those λ with fλ < n3 are essentially those with N(λ) ≤ 3, say, which are very
easy to classify. To finish off the proof of the main result, some inequalities are used which kick in at n ≥ 34,
so the result is brute-forced (with help from the key lemma!) for n ≤ 33. The seven families where N(λ) ≤ 3
are handled case-by-case.
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5. Asymptotic Uniformity

These techniques yield the following promised, vastly stronger result.

Theorem 5.1. Pick λ ` n, fλ ≥ n5 ≥ 1. Then for all r,∣∣∣∣aλ,rfλ
− 1

n

∣∣∣∣ < 1

n2
.

In particular, if n ≥ 81, λ1 < n− 7, and λ′1 < n− 7, then fλ ≥ n5.

Remark 5.2. Since fλ typically is extremely large compared to n, the result says that in absolute terms the
aλ,r are essentially constant as r varies. Indeed, the theorem is really just a sample and can be improved in
various ways depending on the need.

• One can use Roichman’s exponential estimate of normalized symmetric group characters to get
exponential decay in many cases at the cost of less explicit assumptions and bounds. Or, one may
use Larsen-Shalev’s bounds to get a decay rate involving a power of fλ.

• The same techniques can be applied to many cycle types beyond a single long cycle.

I don’t have a particular application for such tight bounds and so have not pursued them further.

6. Unimodality Remark

The argument classifying λ with fλ < n3 essentially replaces the hook length with the opposite hook
length, since the opposite hook product is order-preserving with respect to the diagonal preorder, and the
diagonal preorder is quite flexible. It might be nice to work directly with the symmetric group characters
themselves, though this seems difficult in general.

Remark 6.1. Note that if a+ b+ 1 = n, then

χ(a+1,1b)(1n) =

(
n− 1

a

)
which is unimodal in a. By the Fomin-Lulov formula, if ` | n, we have

|χ(a+1,1b)(`n/`)| =
(n
` − 1⌊
a
`

⌋ )
which is also unimodal in a. Recall that Kλ,(1n) = χλ(1n).

We have a very general sequence of inequalities:

Theorem 6.2 (Snapper ’71, Liebler-Vitale ’73, Lam ’78; Garsia-Procesi ’92). Kλν ≤ Kλµ for all λ if and
only if ν ≥ µ in dominance order. Indeed, ν ≥ µ implies Kλν(t) ≤ Kλµ(t) coefficient-wise.

Can anything approaching this level of beauty be said about symmetric group characters?

Question 6.3. Are there any “nice” infinite families besides hooks and rectangles for which |χλ(µ)| is
monotonic, unimodal, or suitably order-preserving as λ varies? What about as µ varies?

7. Extra Time

My argument proving the Fomin-Lulov hook formula for evaluations of symmetric group characters at
rectangles uses Stanley’s q-analogue of the hook length formula, a result of Stembridge concerning cyclic
exponents, and the following combinatorial lemma which appears to be new.

Lemma 7.1. Pick λ ` n = `s where λ can be written as a sequence of s successive ribbons, each of length `.
Then for all a ∈ Z,

#{c ∈ λ : hc ≡` ±a} = s ·#{a,−a(mod `)}.
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It is actually a special case of a somewhat more general result.

Lemma 7.2. Suppose λ/µ is a ribbon of length `. For any a ∈ Z,

#{c ∈ µ : hc ≡` ±a}+ #{a,−a (mod `)} = #{d ∈ λ : hd ≡` ±a}.

Proof. The argument yields a very explicit description of the movement of hook lengths mod ` as a ribbon is
added. �


