
A ZOO OF COINVARIANT ALGEBRAS

JOSH SWANSON

Abstract. These notes were for a lecture given in the informal “1, 2, 3” seminar at the University of
Washington on October 12th, 2017.
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1. Example 1: Classical Type A

Definition 1.1. “The” coinvariant algebra is

Rn :=
C[x1, . . . , xn]

In

where In is generated by the non-constant, homogeneous, Sn-invariant elements.

Example 1.2. dimCRn <∞. A slick approach:

(t− x1) · · · (t− xn) = tn + (lower order terms in t whose coefficients in C[x1, . . . , xn] are in In).

Now let t = xi, giving xni ∈ In.

Remark 1.3. Here’s some motivation for considering Rn.

• The symmetric polynomials C[x1, . . . , xn] are a free C[x1, . . . , xn]Sn-module of rank dimCRn. (In
fact, a vector space basis corresponds to a module basis.)

• The cohomology of the complete flag manifold H∗(G/B,C) is isomorphic to Rn. (Borel’s isomor-
phism.)

• An an Sn-representation over C, Rn is isomorphic to the the regular representation, but is graded, so
it’s a “graded regular representation.” (Chevalley’s theorem.)
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1.1. Hilbert Series.

Definition 1.4. Let A = ⊕n≥0An where each An is a finite-dimensional vector space. The Hilbert series of
A is

Hilb(A; q) :=
∑
n≥0

(dimAn)qn ∈ Z≥0[[q]].

Question 1.5. What is Hilb(Rn; q)? So far we only know It’s a polynomial and not a power series. [Check
if audience is tracking by asking constant and linear coefficients, namely 1 and n− 1.]

Theorem 1.6. dimCRn = n!. In fact,

Hilb(Rn; q) = [n]q! := [n]q · · · [2]q[1]q

where [k]q := 1 + q + · · ·+ qk−1.

Proof. The dimension count follows from the Hilbert series by taking q = 1. As it happens, In = 〈e1, . . . , en〉,
and e1, . . . , en is a regular sequence. Consequently, we have short exact sequences

0→ C[x1, . . . , xn]

〈e1, . . . , ei−1〉
·ei→ C[x1, . . . , xn]

〈e1, . . . , ei−1〉
→ C[x1, . . . , xn]

〈e1, . . . , ei−1, ei〉
→ 0.

It follows that Hilb(Rn;i−1; q) = qdeg ei Hilb(Rn;i−1; q) + Hilb(Rn;i; q), so that

Hilb(Rn; q) = (1− qn) Hilb(Rn;n−1; q)

= · · ·
= (1− qn) · · · (1− q1) Hilb(C[x1, . . . , xn]; q)

= (1− qn) · · · (1− q1)/(1− q)n

= [n]q!.

�

Theorem 1.7 (Artin’s basis). The “sub-staircase” monomials

{xa11 · · ·xann : 0 ≤ ai ≤ n− i}

form a C-basis for Rn.

Remark 1.8. The claimed Hilbert series is a quick corollary of Artin’s basis. Given a homogeneous basis B
for a graded vector space A, we have

Hilb(A; q) =
∑
b∈B

qdeg b.

Consequently

Hilb(Rn; q) =
∑

(a1,...,an):0≤ai≤n−i

qa1+···+an =
∏

i = 1n
n−i∑
ai=0

qai = [n]q!.

The tuples (a1, . . . , an) can be thought of as the “Lehmer codes” of permutations as follows. Given a
permutation w1 · · ·wn ∈ Sn, an inversion is a pair (i, j) where i < j and wi > wj . To compute the Lehmer
code, let ai be the number of inversions with left endpoint i. The total number of inversions of a permutation
is called its length. So, computing Hilb(Rn; q) using Artin’s basis amounts to finding a nice formula for the
length generating function of Sn. This computation is also intimately related to the Bruhat decomposition
and Borel’s isomorphism.

Theorem 1.9 (Garsia–Stanton’s descent basis). The monomials ∏
i:wi>wi+1

xw(1) · · ·xw(i) : w ∈ Sn


form a C-basis for Rn.



A ZOO OF COINVARIANT ALGEBRAS 3

Remark 1.10. The degree of such a monomial is
∑
i:wi>wi+1

i, which is called the major index of w. This

proves a celebrated result of MacMahon: ∑
w∈Sn

qmajw = [n]q!.

1.2. Frobenius Series.

Remark 1.11. Since Rn is a graded version of the regular representation of Sn, we can ask for a description
of its graded isomorphism type.

Definition 1.12. An (integer) partition of n is a weakly decreasing sequence λ = (λ1, λ2, . . .) of integers
such that λ1 + λ2 + · · · = n. Abbreviate this as λ ` n.

Fact 1.13. The complex irreducible representations of Sn are canonically indexed by partitions of n; call
them Sλ.

Definition 1.14. Let A = ⊕d≥0Ad where each Ad is a finite-dimensional Sn-representation (over C). The
graded Frobenius series of A is

Frob(A; q) :=
∑
d≥0
λ`n

〈Ad, Sλ〉qdsλ

where the sλ are formal indeterminates (really Schur functions).

Question 1.15. What is the Frobenius series for Rn?

Theorem 1.16 (Lusztig–Stanley). We have

Frob(Rn; q) =
∑

T∈SYT(n)

qmajT sshT

where SYT(n) denotes the set of standard Young tableaux on shapes of size n, shT denotes the shape of the
tableau T , and majT is the “major index” of T .

Remark 1.17. That is, the number of copies of Sλ in the dth graded piece of Rn is the number of standard
tableaux of shape λ with major index d. Haglund–Rhoades–Shimozono remark that this result may be
deduced from the fact that the Kozsul complex of Rn is exact; since I haven’t seen it written out or taken
the time to try it myself, it would be interesting to see the argument.

2. Example 2: Reflection Group Generalizations

Definition 2.1. Let G be a finite subgroup of GL(V ) where V = C{x1, . . . , xn}. G acts on V , by definition,
and hence on the polynomial algebra C[x1, . . . , xn]. Consequently, we may define the coinvariant algebra of
G by

RG :=
C[x1, . . . , xn]

IG
where IG is the ideal generated by homogeneous, non-constant G-invariants. As usual, RG has a graded
G-action.

A pseudoreflection is an element g ∈ GL(V ) of finite order whose fixed point set has codimension 1.

Example 2.2. When G is the set of n× n permutation matrices, we recover the coinvariant algebra above.
This is the “type An+1” case.

As is traditional, one next considers the “type Bn” case, namely letting G be the group of automorphisms of
the n-cube in V . This group has order 2nn! since we can reflect each axis independently and permute the axes
amongst themselves arbitrarily. What is the coinvariant algebra in this case? We see that x1 + x2 + · · ·+ xn
is an invariant in type An+1 but not in type Bn. In fact, the ability to toggle negatives forces invariants to
exist only in even degrees. Indeed,

C[x1, . . . , xn]Bn = C[x21, . . . , x
2
n]Sn .
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Consequently, the type Bn coinvariant algebra is

C[x1, . . . , xn]

〈ei(x21, . . . , x2n) : 1 ≤ i ≤ n〉
.

Remark 2.3. For reasons analogous to the type A computation above, the Hilbert series is

Hilb(RBn
; q) = [n]q2 !.

Theorem 2.4. Let G be a finite subgroup of GL(V ) where V = C{x1, . . . , xn}. Then C[x1, . . . , xn]G is a
Cohen–Macaulay algebra, i.e. it is a free module of finite rank over some C[θ1, . . . , θn] where the θi are
algebraically independent G-invariants. This rank is 1 if and only if G is generated by pseudoreflections.

Furthermore, C[x1, . . . , xn]/〈θ1, . . . , θn〉 is isomorphic to the regular representation of G

Remark 2.5. There is a famous classification of G which are generated by pseudoreflections, which includes
the type A and B cases in one large infinite family G(m, p, n), along with finitely many explicitly described
exceptional groups. Consequently, we’ve identified the ungraded Frobenius series of the type B coinvariant
algebra. What is its graded Frobenius series?

Fact 2.6. The complex irreducible representations of type Bn are canonically indexed by tuples of partitions
(λ, µ) such that |λ|+ |µ| = n.

Theorem 2.7. We have

Frob(RBn
; q) =

∑
(λ,µ)

∑
T∈SYT(λ⊕µ)

q|µ|+2majT sλ ⊗ sµ

where λ⊕ µ is a “maximally disjoint” skew diagram obtained from λ and µ.

Remark 2.8. The above theorem generalizes immediately to all G(m, 1, n) (Stembridge, Theorem 5.3), and
(with an extra factor) to all G(m, r, n) (Stembridge, Corollary 6.3). It turns out the invariant subalgebra
in type Dn is generated by ei(x

2
1, . . . , x

2
n) with 1 ≤ i < n together with x1 · · ·xn, and so the type Dn

coinvariant algebra has Hilbert series [n− 1]q2 ![n]q. This description generalizes directly to all G(m, r, n)–see
e.g. Stembridge, proof of proposition 6.3.

Thus our guiding questions have already been answered for essentially all interesting examples in this
direction.

3. Example 3: New Directions: Generalized Coinvariant Algebras

We next summarize some much more recent work. We’ll use natural bigraded analogues of the Hilbert and
Frobenius series.

3.1. Diagonal Coinvariants.

Definition 3.1. The diagonal coinvariant algebra (in type A) is

Dn :=
C[x1, . . . , xn, y1, . . . , yn]

Jn
where Jn is the ideal generated by the non-constant, homogeneous Sn-invariants where Sn acts diagonally on
the two sets of variables simultaneously.

Theorem 3.2 (Haiman). We have dimDn = (n+ 1)n−1. In fact,

Hilb(Dn; q, q−1) = q−(n
2)[n+ 1]n−1q .

Remark 3.3. Haglund–Loehr have a conjectured combinatorial generating function for Hilb(Dn; q, t) using
parking function statistics “area” and “dinv.” Setting t = 0 essentially reduces Dn to Rn.

Theorem 3.4 (Haiman). We have
Frob(Dn; q, t) = ∇en

where ∇ is a certain eigen-operator (with coefficients in Q(q, t)) on the basis of modified Macdonald polynomials.
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Theorem 3.5 (Shuffle Conjecture; proved by Carlsson–Mellit). There is an explicit combinatorial generating
function expression for Frob(Dn; q, t) expanded in the monomial basis.

Remark 3.6. Finding a direct analogue of the Stanley–Lusztig theorem for Dn is a major open problem
which (to my knowledge) has only been solved for hook shapes.

3.2. Generalized Coinvariant Algebras, Type A.

Remark 3.7. The Delta conjecture of Haglund–Remmel–Wilson gives a certain explicit formula for ∆′ek−1
en

which in the k = n case reduces to the shuffle conjecture. The bigraded Sn-module in the k = n case
is thus Dn. The general Delta conjecture has no known or conjectured (natural) bigraded Sn-module.
However, Haglund–Rhoades–Shimozono were able to define singly graded variants of Rn which (up to minor
modification) have graded Frobenius series which agree with the specialization of the Delta conjecture at
t = 0.

Definition 3.8. Given two positive integers k ≤ n, let

Rn,k :=
Q[x1, . . . , xn]

In,k

where

In,k := 〈xk1 , . . . , xkn, en(x1, . . . , xn), . . . , en−k+1(x1, . . . , xn)〉.
Rn,k is a doubly-graded Sn-module.

Remark 3.9. When k = n, we get Rn (since xni ∈ In as noted above). When k = 1, we get Rn,1 ∼= Q.

Theorem 3.10. We have dimRn,k = k! · Stir(n, k) where Stir(n, k) is the number of set partitions of
[n] := {1, . . . , n} into k non-empty subsets. In fact,

Hilb(Rn,k; q) = revq([k]q! · Stirq(n, k)) =
∑

σ∈OPn,k

qcomajσ

where revq reverses polynomials,

Stirq(n, k) := Stirq(n− 1, k − 1) + [k]q · Stirq(n− 1, k), Stirq(1, k) :=

{
1 k = 1

0 k > 1
,

OPn,k is the set of ordered set partitions of [n] into k blocks, and comaj is the co-major index of Remmel–
Wilson.

Remark 3.11. Unfortunately Stir(n, k) does not have a nice product formula. Consequently, there can be
no quick regular sequence argument for computing dimRn,k.

Theorem 3.12. As an ungraded Sn representation, Rn,k is isomorphic to the action of Sn on C{OPn,k}.

Theorem 3.13. We have

Frob(Rn,k; q) = revq

 ∑
T∈SYT(n)

qmajT+(n−k
2 )−(n−k)·DesT

(
DesT

n− k

)
q

ssh(T )′

 .
Remark 3.14. At k = n we recover the Lusztig–Stanley theorem. In any case, we have again answered the
guiding questions for Rn,k.

3.3. Generalized Coinvariant Algebras for Wreath Products.

Remark 3.15. Chan–Rhoades found two generalizations of the Rn,k above when replacing Sn with the
wreath product Cr o Sn = G(r, 1, n), which we next summarize.

Definition 3.16. Let n ≥ k ≥ 1 and r ≥ 1.
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(1) Suppose r ≥ 2. Let

Rrn,k :=
C[x1, . . . , xn]

Irn,k
where

Irn,k := 〈xkr+1
1 , . . . , xkr+1

n , en(xr1, . . . , x
r
n), . . . , en−k+1(xr1, . . . , x

r
n)〉.

(2) Let

Srn,k :=
C[x1, . . . , xn]

Jrn,k
where

Jrn,k := 〈xkr1 , . . . , xkrn , en(xr1, . . . , x
r
n), . . . , en−k+1(xr1, . . . , x

r
n)〉.

Definition 3.17. Let Frn,k denote the set of k-dimensional faces in the Coxeter complex of G(r, 1, n), which

has a natural G(r, 1, n)-action. Let OPrn,k denote the set of r-colored set partitions of [n] into k non-empty
blocks.

Remark 3.18. There is a natural bijection

Frn,k
∼→

n−k∐
z=0

(
[n]

z

)
×OPrn−z,k .

We have
|OPrn,k | = rn · k! · Stir(n, k).

Theorem 3.19. As ungraded G(r, 1, n)-modules,

Rrn,k
∼= C{Frn,k}

Srn,k
∼= C{OPrn,k}

Theorem 3.20. We have

Hilb(Rrn,k; q) =

n−k∑
z=0

(
n

z

)
· qkrz · revq([r]

n−z
q · [k]qr ! · Stirqr (n− z, k))

Hilb(Srn,k; q) = revq([r]
n
q · [k]q! · Stirqr (n, k)).

Remark 3.21. They have an explicit formula for Frob(Rrn,k; q) and Frob(Srn,k; q) generalizing the r = 1

formula above; see their Theorem 6.14 and equation (3.21).


