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(These are lecture notes for a two-part lecture series given in the informal combinatorics seminar at the

University of Washington on April 13th and 20th, 2017. The exposition in part follows some of [B1́5, Ch. 3],
[Pet75], [HZ15], [CJZ12a].)

1. Probability Summary

Definition 1.1. Let X be a real-valued random variable with density function f(x). Recall that

E[g(X)] =

{∫
R g(x)f(x) dx if X is continuous∑∞
x=−∞ g(x)f(x) if X is discrete.

Definition 1.2. The mean and variance of X are

µ := E[X]

σ2 := E[(X − µ)2].

More generally, the dth moment and dth central moment of X are, respectively,

E[Xd] and E[(X − µ)d],

where for our purposes each moment will be finite. The moment-generating function of X is

M(t) :=

∞∑
d=0

E[Xd]
td

d!
.

Remark 1.3. Note that M(t) involves non-central moments. We can “re-center” moments as follows:

E[(X − µ)d] =

d∑
k=0

(
d

k

)
E[Xk](−µ)d−k.

Typically one is actually interested in central moments.
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Remark 1.4. Note also that, when X is continuous,
∞∑
d=0

E[Xd]
td

d!
=

∞∑
d=0

(∫
R
xdf(x) dx

)
td

d!

=

∫
R

( ∞∑
d=0

(xt)d

d!

)
f(x) dx

=

∫
R
extf(x) dx.

In general (continuous, discrete, whatever), we have

M(t) = E[eXt],

assuming X has moments of all orders.

Remark 1.5. The characteristic function of X is

v(t) := E[eiXt].

This always exists for all t ∈ R without any convergence issues. Sometimes when working with M(t) it’s
helpful to really have v(t) in mind, i.e. one imagines evaluating M(t) on the imaginary axis. The characteristic
function of a continuous random variable is the usual Fourier transform of its density function. At a high
level, one often tries to gain insight into a random variable by manipulating its characteristic function, often
tortuously, often using contour integrals and many estimates.

Example 1.6. What is the moment generating function of X := N (µ, σ2)? Recall that

f(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

A standard computation gives

M(t) = E[eXt] = exp

(
µt+

1

2
σ2t2

)
.

The dth central moment of N (µ, σ2) is the dth moment of N (0, σ2), so

exp

(
1

2
σ2t2

)
=

∞∑
n=0

1

22nn!
σ2nt2n =

∞∑
d=0

µd
td

d!
.

It follows that

µd =

{
0 if d is odd

σd(d− 1)!! if d is even.

Definition 1.7. The cumulant generating function of X is

K(t) := logM(t) = logE[eXt].

The cumulants κ1, κ2, . . . of X are defined by

K(t) :=

∞∑
d=1

κd
td

d!
.

Example 1.8. The cumulant generating function of N (µ, σ2) is

log exp

(
µt+

1

2
σ2t2

)
= µt+

1

2
σ2t2,

so the cumulants are κ1 = µ, κ2 = σ2, κ3 = κ4 = · · · = 0.

Remark 1.9. In general we have κ1 = µ, κ2 = σ2, and κ3 = µ3, though the higher cumulants and the higher
central moments in general differ. While cumulants may initially be less intuitive than central moments,
they’re often “better.” Some examples:

• The second and higher cumulants of X agree with those for X − µ.
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• The cumulants of the sum of independent random variables is the sum of the cumulants.
• The cumulants of a normal distribution are much simpler than its central moments.

Remark 1.10. The (non-central) moments and cumulants of X are related by

E[Xd] =
∑
λ`d

d!

zλ

κλ1
· · ·κλk

(λ1 − 1)! · · · (λk − 1)!
.

We can replace the left-hand side with µd if we replace κ1 with 0, leaving the other terms the same. For
instance, at d = 3 we have

E[X3] =
3!

3 · 1!

κ3
2!

+
3!

2 · 1 · 1! · 1!

κ2κ1
1! · 0!

+
3!

13 · 3!

κ31
0!3

= κ3 + 3κ2κ1 + κ31,

hence (again)

µ3 = κ3.

Example 1.11. Fix n and let X measure the length of elements in Sn taken uniformly at random. That is,
the density function for X is

f(k) = #{w ∈ Sn : `(w) = k}/n!.

Recall that the length generating function for Sn is

S`n(q) :=
∑
σ∈Sn

q`(σ) = [n]q! =

n∏
i=1

(1 + q + · · ·+ qi−1).

Note that

M(t) = E[eXt] =

∞∑
k=0

ektf(k)

=

∞∑
k=0

f(k)(et)k =
1

n!
S`n(et).

That is, S`n(q) can be thought of as essentially equivalent to the moment generating function. Hence the
moment-generating function for the length statistic on Sn is simply

M(t) =
[n]et !

n!
.

One approach for computing the central moments of X is to compute the cumulant generating function
K(t) = logM(t).

Remark 1.12. To reiterate, we have the following correspondence:

combinatorial generating function↔ moment-generating function.

Identities involving one can be interpreted as identities for the other.

Example 1.13. Consider the uniform discrete distribution on [0, n− 1], i.e.

f(k) :=

{
1
n if k = 0, 1, . . . , n− 1

0 otherwise.

The moment-generating function is

M(t) =
1

n

qn − 1

q − 1

∣∣∣∣
q=et

,

so the cumulant-generating function is

K(t) = log

(
ent − 1

et − 1

)
− log n.

Differentiating and simplifying gives

K ′(t) =
n

ent − 1
− 1

et − 1
+ n− 1.
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Recall that
t

et − 1
=

∞∑
m=0

Bm
tm

m!
,

where B′m is the mth Bernoulli number (where B′0 = 1, B′1 = − 1
2 , B

′
2 = 1

6 ). Hence

K ′(t) = (n− 1) +

∞∑
m=0

Bm
m!

(nm − 1)tm−1,

so that

K(t) =

∞∑
m=1

Bm
m

(nm − 1)
tm

m!
+ (n− 1)t.

The t coefficient is κ1 = µ = n−1
2 . An alternate convention for the Bernoulli numbers uses B1 = 1

2 with the
rest unchanged. Hence

κd =
Bd
d

(nd − 1).

Example 1.14. What are the cumulants of the length statistic on Sn? Since

M(t) =
[n]et !

n!
=

n∏
i=1

[i]et

i
,

we have

K(t) = logM(t) =

n∑
i=1

log
[i]et

i
=

∞∑
d=1

Bd
d

n∑
i=1

(id − 1)
td

d!
.

Hence the cumulants are given by

κd =
Bd
d

n∑
i=1

(id − 1).

This yields an explicit formula for the central moments µd as a sum over partitions of d of terms involving
products of Bernoulli numbers.

2. Asymptotic Normality

Definition 2.1. Given a real-valued random variable X, the corresponding normalized random variable is

X∗ :=
X − µ
σ

.

Note that X∗ has mean 0 and variance 1. The central moments µd of X are related to the (central) moments
µ∗d of X∗ by

µ∗d =
µd
σd
.

Similarly

κ∗d =
κd
σd
.

Definition 2.2. Let X1, X2, . . . be a sequence of real-valued random variables. Let X∗n have cumulative
distribution function Φn(x). Say N(0, 1) has cumulative distribution function

Ψ(x) =
1√
2π

∫ x

−∞
exp

(
− t

2

2

)
dt.

We say that X1, X2, . . . is asymptotically normal if, for all x ∈ R,

lim
n→∞

Φn(x) = Ψ(x).

Theorem 2.3. Suppose X1, X2, . . . is a sequence of real-valued random variables with moments of all orders.
Suppose X∗n has dth central moment µ∗d;n. If for each d,

lim
n→∞

µ∗d;n = νd

where νd is the dth central moment of N(0, 1), then X1, X2, . . . is asymptotically normal.
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Remark 2.4. One may check cumulants instead of moments. That is, if κ∗d;n is the dth cumulant of X∗n, it
suffices to show that for each d

lim
n→∞

κ∗d;n =


0 if d = 1

1 if d = 2

0 if d ≥ 3.

Corollary 2.5. The length of elements of Sn is asymptotically normal.

Proof. We have

κ∗d;n =
1

σd
Bd
d

n∑
i=1

(id − 1)

where

σ2 =
1

12

n∑
i=1

(i2 − 1).

Hence κ∗d;n = O(nd+1−3d/2)→ 0 for d ≥ 3, as required. �

Remark 2.6. Asymptotic normality shows up all the time with combinatorial statistics. Some examples:

Statistic Set Generating Function Reference

Length/major
index

Sn [n]q! [Fel45], [Gon44]; see

[B1́5, Thm. 3.3.4]

Length/major
index

Sn/Sα, words content α
(
n
α

)
q

Mann; Whitney;
Diaconis; Canfield-
Janson-Zeilberger;
see [CJZ12a] and
corrigendum

Major index SYT(λ) qb(λ)
[n]q !∏
c∈λ[hc]q

Billey-Konvalinka-
Swanson (forthcom-
ing)

# parts partitions of n with distinct parts
∏∞
m=1(1 + xym) [EL41]; see [B1́5,

Ex. 3.5.2]
# elements subsets of n (1 + q)n Classical

# left-to-right min-
ima; # cycles

Sn
∏n−1
i=0 (q + i) [Fel45], [Gon44]; see

[B1́5, Thm. 3.3.2]

# blocks set partitions of [n]
∑
k S(n, k)qk [Har67]; see [B1́5,

Thm. 3.4.3]

There are many other examples as well. One of the common themes is particularly good control over the
roots of the moment generating function.

Remark 2.7. There are several major techniques for proving asymptotic normality results. We summarize
several here.

• The method of moments (cumulants) from last time.
• Central limit-type theorems.

– Averages of iid random variables (e.g. fair coin flips; 1
2n (1 + q)n).

– Sums of independent random variables (e.g. Berry-Esseen theorem, see [B1́5, Thm. 3.2.4];
inversion number on Sn by sum of Lehmer code).

– A million zillion variations.
• Control of roots of combinatorial generating functions f(q) =

∑n
i=0 aiq

i (estimating the ai).
– Real, non-negative roots. (Sum of Bernoulli’s. See e.g. [Pit97]; works for instance for binomial

coefficients, Eulerian numbers.)



6 JOSH SWANSON

– Complex norm 1 roots. (See [HZ15]; works for instance for Gaussian binomial coefficient
polynomials.)

• Direct estimates of the characteristic function under Fourier inversion.

3. Gaussian Multinomials

Next we’ll summarize results of Hwang-Zacharovas [HZ15] and Canfield-Janson-Zeilberger [CJZ12a] which
shed light on, among other things, the distribution of coefficients of q-Gaussian multinomials.

Theorem 3.1 ([HZ15, Thm. 1.1]). Let {Xn} be a sequence of discrete random variables whose probability
generating functions fn(q) := E[qXn ] are polynomials of degree n with all roots ρj lying on the unit circle
|ρj | = 1. Then:

• 1 ≤ E[(X∗n)4] < 3;
• {Xn} is asymptotically normal if and only if

lim
n→∞

E[(X∗n)4] = 3.

• {Xn} is “asymptotically Bernoulli” (p.g.f. 1
2 (q−1 + q1)) if and only if

lim
n→∞

E[(X∗n)4] = 1.

Example 3.2. (Following [HZ15], discussion after Theorem 1.1.) Letting Xn be the length statistic on Sn,
the probability generating functions are fn(q) = [n]q!/n!, which satisfy the hypotheses of the theorem (well,
we have to fiddle with the degrees). A “straightforward computation” gives

µ∗4;n = 3− 9(6n2 + 15n+ 16)

25n(n− 1)(n+ 1)
→ 3.

Hence we again see that length on Sn is asymptotically normal.

Example 3.3. (Following [HZ15, §4.1].) One may check that µ∗4;n → 3 if and only if
κ4;n

κ2
2;n
→ 0, which is

frequently easier to check. For instance, suppose we have a sequence of combinatorial generating functions

fn(q) =

∏N(n)
i=1 (1− qbi)∏N(n)
i=1 (1− qai)

∈ N[q].

Then

κd;n = (−1)d
Bd
d

∑
1≤i≤N(n)

(bdi − adi ),

so the asymptotic normality condition becomes

lim
n→∞

κn;4
κ2n;2

=
144

120
lim
n→∞

∑N(n)
i=1 (b4i − a4i )

(
∑N(n)
i=1 (b2i − a2i ))2

= 0.

Now instead take fn(q) =
(
n
α(n)

)
q

for a sequence of partitions α(n). Using analogous computations, the

corresponding coefficients are asymptotically normal if

α
(n)
1 →∞ and

∑
i≥2

α
(n)
i →∞.

Hwang-Zacharovas say these conditions appeared earlier in [CJZ12a], though only the second one actually
appears. Canfield-Janson-Zeilberger note that the second condition is necessary for asymptotic normality.
See also the corrigendum [CJZ12b] for more of the history of this result.



ASYMPTOTIC NORMALITY AND COMBINATORIAL STATISTICS 7

4. Local Limit Theorems

Definition 4.1. (Informal.) A sequence of real-valued random variables X1, X2, . . . satisfies a local limit
theorem if the we have some explicit, uniform upper bound on the difference between the density function of
Xn and a corresponding normal density function.

We’ll continue the theme of analyzing coefficients of
(
n
α

)
q

and discuss the local limit theorem in [CJZ12a]

in detail.

Definition 4.2. Pick a (weak) composition α � N . Let Wα denote the set of words of content α. Let Mα

be the inversion statistic on Wα. The corresponding probability generating function is fα(q) :=
(
n
α

)
q
/
(
n
α

)
.

Let a∗ be the maximum of α and let N∗ := N − a∗. For instance, if α1 ≥ α2 ≥ · · · , then a∗ = α1 and
N∗ = α2 + α3 + · · · .

Canfield et al. give a conjectured local limit theorem for arbitrary Mα.

Conjecture 4.3. Uniformly for all α and all integers k,

P[Mα = k] = N (µ, σ2)(k) +O(1/N∗)

where µ, σ2 are the mean and variance of Mα, and N (µ, σ2) is corresponding normal density function.

They are able to prove the following slightly weaker result.

Theorem 4.4 ([CJZ12a, Thm. 4.5]). There exists a positive constant c such that for every C, the following
is true. Uniformly for all α such that a∗ ≤ CecN∗ and all k, the estimate in the conjecture holds.

Example 4.5. When α = (1N ), Mα is the inversion statistic on SN , a∗ = 1, and N∗ = N − 1. The
exponential inequality trivially holds, giving an O(1/N) error bound on the normal estimate for counting
inversions. The exponential inequality seems to be a rather mild constraint in most situations.

Remark 4.6. The proof of the theorem is lengthy and quite technical in places (at least to a non-probabalist).
Nonetheless it is instructive since some of the techniques are very common when proving local limit theorems.

Observation 4.7. (Cauchy integral formula.) Suppose f(z) =
∑n
k=0 akz

k. Then

ak =
1

2πi

∫
C

f(z)
dz

zk+1
,

where C is a positively oriented contour around 0. More concretely,

ak =
1

2π

∫ π

−π
f(eiθ)e−ikθ dθ.

Hence good estimates for the integral give good estimates for ak.

Remark 4.8. Suppose f(z) is the probability generating function of a discrete random variable X on a finite
set. Then f(eit) = E[eiXt] is the characteristic function of X defined last time. Recall that the characteristic
function is in general the Fourier transform of the probability density function (if it exists). In this way the
Cauchy integral formula is allowing us to use Fourier inversion and knowledge of the characteristic function
to deduce properties of the distribution X and its density function.

Observation 4.9. By continuity, f(eiθ) ≈ 1 for θ ≈ 0. Moreover, one expects f(eiθ) to suffer significant
“destructive interference” away from θ = 0. So, one may break the integral up into the small θ regime and the
large θ regime, using separate estimates in each case.

For asymptotically normal distributions, one expects the “dominant” small θ contribution to give rise
to the normal behavior, while deviations from normality arise from the more subtle and smaller large θ
contributions.
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Example 4.10. By Taylor expansion with the product formula for fα(eiθ), we have [CJZ12a, (3.4)]:

if |θ| ≤ 1

N
, then fα(eiθ) = exp

(
iµθ − σ2θ2

2
+O(N4N∗θ

4)

)
.

Recall that if X = N (µ, σ2), then

E[eitX ] = exp

(
iµθ − σ2θ2

2

)
.

Thus the characteristic function of Mα agrees with that for N (µ, σ2) for small θ. This estimate is actually
powerful enough to show that the characteristic function of M∗α tends to that of N(0, 1) as N∗ →∞, which
is the heart of their proof of asymptotic normality (see the end of their proof of Theorem 1.2).

They proceed to break the integral into two regimes as follows.

Lemma 4.11 ([CJZ12a, Lemma 4.1]). There exists a constant τ > 0 such that for all α,

if |θ| ≤ τ

N
then |fα(eiθ)| ≤ exp

(
−σ

2θ2

4

)
.

Using this estimate, they are able to bound the error in the normal approximation as follows.

Lemma 4.12 ([CJZ12a, Lemma 4.2]). Uniformly for all α and k,

|P[Mα = k]−N (µ, σ2)(k)| ≤
∫ π

τ/N

|fα(eiθ)| dθ +O

(
1

σN∗

)
.

Remark 4.13. Hence the local limit theorem reduces to finding a sufficiently tight bound on the modulus of
fα(eiθ) away from 0. They conjecture that

fα(eiθ) ≤ O
(

1

σ3θ3

)
, 0 < θ ≤ π,

at least for N∗ ≥ 6, which is sufficient to prove the bound in the local limit theorem. They are unable to
prove this, unfortunately, and instead show the following.

Lemma 4.14 ([CJZ12a, Lemma 4.4]). There exists a constant c > 0 such that

if
τ

N
≤ |θ| ≤ π, then |fα(eiθ)| ≤ exp(−cN∗).

Remark 4.15. The proof is rather involved. It uses a two-variable analogue of fα(z); estimates of exponentials
in terms of rational functions; various trig identities and inequalities; the Cauchy integral formula; Stirling’s
approximation; various estimates of pieces of the product formula for fα(z); and more. The local limit
theorem above follows very quickly from these pieces.

Remark 4.16. Local limit theorems can feel more satisfying than asymptotic normality results. They can
also prove (often partial) statements of independent interest. The preceding local limit theorem implies the
following log-concavity result.

Theorem 4.17 ([CJZ12a, Thm. 4.6]). Let

ck := [qk]

(
2n

n

)
q

=

(
2n

n

)
P[M(n,n) = k].

Then for each constant C we have some n0 such that for all n ≥ n0 and |k − µ| ≤ Cσ,
c2k ≥ ck−1ck+1.

Remark 4.18. That is, the number of inversions of W(n,n) is log-concave for n sufficiently large sufficiently
close to the mean. In fact, log-concavity for the ck fails sometimes, so some hypothesis is necessary.

Remark 4.19. Louchard-Prodinger [LP03] give more refined local limit theorems for the number of inversions
on Sn using the “Saddle point method.” This involves using Cauchy’s integral formula with a contour passing
through a saddle point of the probability generating function. The argument breaks up the analysis into
different regimes, e.g. near the peak and in the tails.
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