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Moduli Spaces

A moduli space is informally a space whose points
parameterize more complicated objects.

Ex: the points of projective space are lines in affine
space; polynomials α + βx + γx2 are points
(α, β, γ) ∈ k3.

Many examples: Grassmannians, partial flag varieties,
Mg , V /G , Hilbp

X , . . . .

Slogan: the geometry of moduli space reflects the
structure of the underlying objects.
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Schemes

A smooth manifold is roughly a topological space X
covered by an “atlas” of open subsets which have
“smoothly compatible” maps to Euclidean space.

Ex: a donut’s surface; a sphere; a parabola.

The atlas gives us a notion of “smooth function” on
open subsets of U ⊂ X .

A scheme is roughly a topological space X together with
a notion of “algebraic functions” OX (U) for all open
subsets U ⊂ X .

Ex: affine and projective varieties; “the intersection” of
y = x and y = x2 (it “remembers multiplicity 2”).
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Hilbert Schemes and Hn

The Hilbert scheme of an appropriate scheme X is itself
a scheme whose (closed) points correspond to certain
subschemes of X .

Famous example: the
Hilbert scheme Hn of points in C2.

The (closed) points of Hn are ideals I ⊂ C[x , y ] where
dimCC[x , y ]/I = n.

If {p1, . . . , pn} ⊂ C2, then I ({p1, . . . , pn}) ∈ Hn, hence
the name.

Such ideals form an open, dense subset of Hn. Can you
think of any other points?
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Hn is connected

Fact: Hn is connected.

Idea 1: connect arbitrary I ∈ Hn to LT(I ) ∈ Hn by
“Gröbner degenerations.”

Ex: if I = 〈y3, x2 − y2, xy − y2〉, then use
It := 〈y3, x2 − t2y2, xy − ty2〉. We have I1 = I and
I0 = LT(I ) = 〈y3, x2, xy〉.
Idea 2: V (LT(I )) = {(0, 0)}; “spread out” vanishing
locus to n distinct points.

Idea 3: Can connect arbitrary I ({p1, . . . , pn}) and
I ({q1, . . . , qn}) by “making the points coincide.”
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Further Directions

Hn was essential to Haiman’s famous proof of the n!
conjecture, which settled the Macdonald positivity
conjecture.

Hilbert schemes exist in huge generality. Hn is in some
sense the second non-trivial example.

Lectures on Hn: [Nak99]

Details on Gröbner degeneration proof: [MS05, §18.2].
(Beware typos in Ex. 18.9.)

General summary of Hilbert schemes: [FGI+05].

Original construction due to Grothendieck: [Gro62].
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