

• A moduli space is informally a space whose points parameterize more complicated objects.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- A moduli space is informally a space whose points parameterize more complicated objects.
- Ex: the points of projective space are lines in affine space; polynomials $\alpha + \beta x + \gamma x^2$ are points $(\alpha, \beta, \gamma) \in k^3$.

- A moduli space is informally a space whose points parameterize more complicated objects.
- Ex: the points of projective space are lines in affine space; polynomials $\alpha + \beta x + \gamma x^2$ are points $(\alpha, \beta, \gamma) \in k^3$.
- Many examples: Grassmannians, partial flag varieties, *M_g*, *V*/*G*, Hilb^p_X,

- A moduli space is informally a space whose points parameterize more complicated objects.
- Ex: the points of projective space are lines in affine space; polynomials $\alpha + \beta x + \gamma x^2$ are points $(\alpha, \beta, \gamma) \in k^3$.
- Many examples: Grassmannians, partial flag varieties, *M_g*, *V*/*G*, Hilb^p_X,

 Slogan: the geometry of moduli space reflects the structure of the underlying objects.

A <u>smooth manifold</u> is roughly a topological space X covered by an "atlas" of open subsets which have "smoothly compatible" maps to Euclidean space.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A <u>smooth manifold</u> is roughly a topological space X covered by an "atlas" of open subsets which have "smoothly compatible" maps to Euclidean space.
Ex: a donut's surface; a sphere; a parabola.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A smooth manifold is roughly a topological space X covered by an "atlas" of open subsets which have "smoothly compatible" maps to Euclidean space.
 - Ex: a donut's surface; a sphere; a parabola.
- The atlas gives us a notion of "smooth function" on open subsets of $U \subset X$.

- A smooth manifold is roughly a topological space X covered by an "atlas" of open subsets which have "smoothly compatible" maps to Euclidean space.
- Ex: a donut's surface; a sphere; a parabola.
- The atlas gives us a notion of "smooth function" on open subsets of $U \subset X$.
- A <u>scheme</u> is roughly a topological space X together with a notion of "algebraic functions" $\mathcal{O}_X(U)$ for all open subsets $U \subset X$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A smooth manifold is roughly a topological space X covered by an "atlas" of open subsets which have "smoothly compatible" maps to Euclidean space.
- Ex: a donut's surface; a sphere; a parabola.
- The atlas gives us a notion of "smooth function" on open subsets of $U \subset X$.
- A <u>scheme</u> is roughly a topological space X together with a notion of "algebraic functions" $\mathcal{O}_X(U)$ for all open subsets $U \subset X$.
- Ex: affine and projective varieties; "the intersection" of y = x and $y = x^2$ (it "remembers multiplicity 2").

(日) (同) (三) (三) (三) (○) (○)

■ The <u>Hilbert scheme</u> of an appropriate scheme *X* is itself a scheme whose (closed) points correspond to certain subschemes of *X*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

■ The <u>Hilbert scheme</u> of an appropriate scheme *X* is itself a scheme whose (closed) points correspond to certain subschemes of *X*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Famous example: the Hilbert scheme H_n of points in \mathbb{C}^2 .

■ The <u>Hilbert scheme</u> of an appropriate scheme X is itself a scheme whose (closed) points correspond to certain subschemes of X.

Famous example: the Hilbert scheme H_n of points in \mathbb{C}^2 .

The (closed) points of H_n are ideals $I \subset \mathbb{C}[x, y]$ where $\dim_{\mathbb{C}} \mathbb{C}[x, y]/I = n$.

■ The <u>Hilbert scheme</u> of an appropriate scheme X is itself a scheme whose (closed) points correspond to certain subschemes of X.

Famous example: the Hilbert scheme H_n of points in \mathbb{C}^2 .

- The (closed) points of H_n are ideals $I \subset \mathbb{C}[x, y]$ where $\dim_{\mathbb{C}} \mathbb{C}[x, y]/I = n$.
- If $\{p_1, \ldots, p_n\} \subset \mathbb{C}^2$, then $I(\{p_1, \ldots, p_n\}) \in H_n$, hence the name.

■ The <u>Hilbert scheme</u> of an appropriate scheme X is itself a scheme whose (closed) points correspond to certain subschemes of X.

Famous example: the Hilbert scheme H_n of points in \mathbb{C}^2 .

- The (closed) points of H_n are ideals $I \subset \mathbb{C}[x, y]$ where $\dim_{\mathbb{C}} \mathbb{C}[x, y]/I = n$.
- If $\{p_1, \ldots, p_n\} \subset \mathbb{C}^2$, then $I(\{p_1, \ldots, p_n\}) \in H_n$, hence the name.
- Such ideals form an open, dense subset of H_n . Can you think of any other points?

(日) (同) (三) (三) (三) (○) (○)

Fact: H_n is connected.

Fact: H_n is connected.

■ Idea 1: connect arbitrary $I \in H_n$ to $LT(I) \in H_n$ by "Gröbner degenerations."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact: H_n is connected.

- Idea 1: connect arbitrary $I \in H_n$ to $LT(I) \in H_n$ by "Gröbner degenerations."
- Ex: if $I = \langle y^3, x^2 y^2, xy y^2 \rangle$, then use $I_t := \langle y^3, x^2 - t^2y^2, xy - ty^2 \rangle$. We have $I_1 = I$ and $I_0 = LT(I) = \langle y^3, x^2, xy \rangle$.

Fact: H_n is connected.

- Idea 1: connect arbitrary $I \in H_n$ to $LT(I) \in H_n$ by "Gröbner degenerations."
- Ex: if $I = \langle y^3, x^2 y^2, xy y^2 \rangle$, then use $I_t := \langle y^3, x^2 - t^2y^2, xy - ty^2 \rangle$. We have $I_1 = I$ and $I_0 = LT(I) = \langle y^3, x^2, xy \rangle$.
- Idea 2: V(LT(1)) = {(0,0)}; "spread out" vanishing locus to n distinct points.

Fact: H_n is connected.

- Idea 1: connect arbitrary $I \in H_n$ to $LT(I) \in H_n$ by "Gröbner degenerations."
- Ex: if $I = \langle y^3, x^2 y^2, xy y^2 \rangle$, then use $I_t := \langle y^3, x^2 - t^2y^2, xy - ty^2 \rangle$. We have $I_1 = I$ and $I_0 = LT(I) = \langle y^3, x^2, xy \rangle$.
- Idea 2: V(LT(I)) = {(0,0)}; "spread out" vanishing locus to n distinct points.
- Idea 3: Can connect arbitrary $I(\{p_1, \ldots, p_n\})$ and $I(\{q_1, \ldots, q_n\})$ by "making the points coincide."

H_n was essential to Haiman's famous proof of the *n*! conjecture, which settled the Macdonald positivity conjecture.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- *H_n* was essential to Haiman's famous proof of the *n*! conjecture, which settled the Macdonald positivity conjecture.
- Hilbert schemes exist in huge generality. H_n is in some sense the second non-trivial example.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- *H_n* was essential to Haiman's famous proof of the *n*! conjecture, which settled the Macdonald positivity conjecture.
- Hilbert schemes exist in huge generality. H_n is in some sense the second non-trivial example.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lectures on *H_n*: [Nak99]

- *H_n* was essential to Haiman's famous proof of the *n*! conjecture, which settled the Macdonald positivity conjecture.
- Hilbert schemes exist in huge generality. H_n is in some sense the second non-trivial example.
- Lectures on H_n: [Nak99]
- Details on Gröbner degeneration proof: [MS05, §18.2]. (Beware typos in Ex. 18.9.)

- *H_n* was essential to Haiman's famous proof of the *n*! conjecture, which settled the Macdonald positivity conjecture.
- Hilbert schemes exist in huge generality. H_n is in some sense the second non-trivial example.
- Lectures on H_n: [Nak99]
- Details on Gröbner degeneration proof: [MS05, §18.2]. (Beware typos in Ex. 18.9.)

General summary of Hilbert schemes: [FGI+05].

- *H_n* was essential to Haiman's famous proof of the *n*! conjecture, which settled the Macdonald positivity conjecture.
- Hilbert schemes exist in huge generality. H_n is in some sense the second non-trivial example.
- Lectures on H_n: [Nak99]
- Details on Gröbner degeneration proof: [MS05, §18.2]. (Beware typos in Ex. 18.9.)
- General summary of Hilbert schemes: [FGI+05].
- Original construction due to Grothendieck: [Gro62].

Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli, *Fundamental algebraic geometry*, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, 2005, Grothendieck's FGA explained. MR 2222646

Alexander Grothendieck, *Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.]*, Secrétariat mathématique, Paris, 1962. MR 0146040

Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR 2110098

 Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18, American Mathematical Society, Providence, RI, 1999. MR 1711344