THREE EXAMPLES OF ALGEBRAIC GEOMETRY IN ALGEBRAIC COMBINATORICS

JOSH SWANSON

(This lecture was given in the student-run 123 seminar at the University of Washington on Jaunary 12th, 2016.)

Outline:

- (1) Bruhat stuff, Schubert varieties, Coxeter group generalizations
- (2) Schubert multiplication, positivity
- (3) Smoothness and pattern avoidance
- (4) Gamma positivity

Definition 1. The (complete) flag manifold is

$$\operatorname{Fl}(\mathbb{C}^n) := \{F_{\bullet} = F_1 \subset \cdots \subset F_n \subset \mathbb{C}^n : \dim_{\mathbb{C}} F_i = i\}.$$

 $G := \operatorname{GL}(\mathbb{C}^n)$ acts on $\operatorname{Fl}(\mathbb{C}^n)$ with stabilizer $B_+ :=$ upper triangular matrices in $\operatorname{GL}(\mathbb{C}^n)$. Hence

$$\operatorname{Fl}(\mathbb{C}^n) = G/B_+ = \{gB_+\}_{g \in G}.$$

(as a set, or as a homogeneous space, i.e. a quotient of a Lie group).

Here the leftmost k columns of a matrix in G span F_k .

Question 2. This is asymmetric; what if we considered the double cosets $B_{-}\backslash G/B_{+} := \{B_{-}gB_{+}\}_{g\in G}$? At g = id, this is the set of matrices with an LU-decomposition ("almost all").

Fact 3. Such double cosets are determined by discrete rank conditions. Let $g_{[q,p]}$ denote the upper left rectangle of width p and height q in the matrix for g. Define

$$\operatorname{rk}: G \to M_{n \times n}(\mathbb{N})$$
$$(\operatorname{rk} g)_{(q,p)} := \operatorname{rank}_{\mathbb{C}} g_{[q,p]}.$$

Then the fibers of rk are precisely the double cosets above. Moreover, each such double coset contains a unique permutation $w \in S_n$. That is,

$$\operatorname{GL}(\mathbb{C}^n) = \prod_{w \in S_n} B_- w B_+,$$

which is called the *Bruhat decomposition* for G. (It exists in significantly more generality.) Here we're embedding $S_n \hookrightarrow G$ by, for instance,

$$w = [25134] \mapsto \begin{pmatrix} & 1 & & \\ 1 & & & \\ & & 1 & \\ & & & 1 \\ & 1 & & \end{pmatrix}$$

Question 4. What do these cells "look like" in $\operatorname{Fl}(\mathbb{C}^n) = G/B_+$?

Definition 5. The open Schubert cell associated to $w \in S_n$ is

$$\begin{aligned} X_w^\circ &:= B_- \cdot (wB_+) \subset G/B_+ \\ &= \{g \in \operatorname{GL}(\mathbb{C}^n) : \operatorname{rk} g = \operatorname{rk} w\} \end{aligned}$$

Date: January 12, 2016.

Example 6. If w = [25134], then $F_{\bullet} \in X_w^{\circ}$ can be represented by $A \in GL(\mathbb{C}^n)$ such that

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ * & 0 & * & 1 & 0 \\ * & 0 & * & * & 1 \\ * & 1 & 0 & 0 & 0 \end{pmatrix}$$

Here * can be any element of \mathbb{C} , and all such choices correspond to distinct flags. Hence $X_{[25134]}^{\circ} \cong \mathbb{A}^{6}$.

Remark 7. The above example generalizes to any $w \in S_n$ —place zeros right and up from each 1, and the remaining entries are unconstrained. Hence $X_w^{\circ} \cong \mathbb{A}^{\dim X_w}$. Moreover, we find

dim
$$X_w = \#$$
stars $= \sum_{i=1}^n \#$ 1's below, right of the 1 at (w_i, i)
 $= \sum_{i=1}^n \#\{j > i : w_j > w_i\} = \#$ "non-inversions" (i, j) s.t. $i < j, w_i < w_j$
 $= \binom{n}{2} - \#$ "inversions" (i, j) s.t. $i < j, w_i > w_j$

Aside 8. (As an example of inv w, one can show # inv $uv \equiv_2 (\#$ inv u)(# inv v). Deduce sgn: $S_n \to \mathbb{Z}/2$ is well-defined, and use this to define $\det(x_{ij}) := \sum_{w \in S_n} (-1)^{\operatorname{sgn} w} \prod_i x_{w_i}$.)

Definition 9. Let $X_w := \overline{X_w^{\circ}}$ (the Zariski or Euclidean closure) be a *Schubert variety*.

Theorem 10. We have

(a) $\operatorname{codim} X_w^\circ = \# \operatorname{inv} w.$ (b) $X_w = \{\operatorname{rk} A \le \operatorname{rk} w\}/B_+$ (compare ranks pointwise) (c) $X_w = \coprod_{\operatorname{rk} v \le \operatorname{rk} w} X_v^\circ$ forms an affine stratification of $\operatorname{Fl}(\mathbb{C}^n)$ (d) X_w is an integral, Cohen-Macaulay variety. (e) $X_u \supseteq X_v \Leftrightarrow u \le v.$

Warning: there are (a dihedral group of order) 8 "natural" ways to reindex the X_w , so there are many conflicting conventions and definitions in the literature.

Example 11. We find

$$\operatorname{rk} \operatorname{id} = \begin{pmatrix} 1 & 1 & 1 & \cdots \\ 1 & 2 & 2 & \cdots \\ 1 & 2 & 3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \operatorname{rk}(w_0 \in S_3) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$

where $w_0 = [n(n-1)\cdots 21] \in S_n$. One can check rk id is the maximum of rk S_n and rk w_0 is the minimum. Hence $X_{id} = \operatorname{Fl}(\mathbb{C}^n)$. Indeed, since $\# \operatorname{inv} w_0 = \binom{n}{2} = \dim \operatorname{Fl}(\mathbb{C}^n)$, X_{w_0} is a single point (flag).

Definition 12. For $u, v \in S_n$, set $u \leq v$ if and only if $\operatorname{rk} u \geq \operatorname{rk} v$ pointwise. This is Bruhat order on S_n . (Switching the order is motivated by a desire to have minimum id, maximum w_0 .)

We next compare Bruhat order and $\operatorname{codim} X_w$ to standard Coxeter group theory, which provides a significant generalization.

Definition 13. Let \mathcal{G} be a graph with vertices $1, 2, \ldots, n$, and optional edge labels from $\{4, 5, 6, \ldots\} \cup \{\infty\}$. (Draw picture of such a graph; include two components, an unlabeled edge, edges labeled 4, 6, and ∞ .) This is a *Coxeter diagram*. Given such a \mathcal{G} , set

$$m_{\alpha\beta} := \begin{cases} 1 & \text{if } \alpha = \beta \\ 2 & \text{if } \alpha \neq \beta \text{ not connected} \\ 3 & \text{if } \alpha \neq \beta \text{ connected, unlabeled} \\ k & \text{if } \alpha \neq \beta \text{ labeled by } k \end{cases}$$

and define the *Coxeter group* of \mathcal{G} by

$$W := \langle s_{\alpha} : (s_{\alpha} s_{\beta})^{m_{\alpha\beta}} = 1 \rangle$$

(where $(s_{\alpha}s_{\beta})^{\infty} = 1$ is interpreted as no constraint).

Example 14. If $m_{\alpha\beta} = 2$, then $s_{\alpha}s_{\beta} = s_{\beta}s_{\alpha}$. Hence W is the product of the Coxeter groups of the connected components of \mathcal{G} .

Theorem 15. W is finite if and only if the connected components of \mathcal{G} all come from one of the four infinite families A_n (linear), $B_n = C_n$ (linear, last edge labeled 4), D_n (linear with a fork on the end), $I_2(m)$ (two vertices connected by an edge labeled m), or one of six other exceptions.

Homework 16. Show $I_2(m)$ gives the dihedral group of order 2m.

Example 17. Type A_{n-1} gives

$$W = \langle s_1, \dots, s_{n-1} : s_i^2 = 1, s_i s_j = s_j s_i \ \forall |i-j| > 1, s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \rangle \xrightarrow{\sim} S_n$$
$$s_i \mapsto (i, i+1).$$

Definition 18. A reduced expression for $w \in W$ is one of the form $w = s_{i_1} \cdots s_{i_r}$ for r minimal. We say $\ell(w) := r$ is the length of w.

Example 19. For $w \in S_n$, we have $\ell(w) = \# \operatorname{inv} w$.

Fact 20. For general W, the "braid relations" (those coming from $m_{\alpha\beta} \ge 2$) connect all reduced words for a particular w.

Definition 21. For $u, v \in W$, set $u \leq v$ iff there is a reduced expression for u which is a subexpression for a reduced expression for v. This is *Bruhat order* on W.

Example 22. Draw the Bruhat graph of S_3 ; label the vertices by e.g. s_1s_2 .

Fact 23. We have

- This agrees with the earlier Bruhat order for S_n
- The poset (W, \leq) is ranked by ℓ , i.e. every poset-theoretic covering relation increases length by 1.
- There are reasonably efficient tests for determining if $u \leq v$ in S_n .

Corollary 24. Every X_u is a codimension-1 subvariety of some X_v (for $u \neq id$).

We now turn to Schubert multiplication. By the affine stratification of $\operatorname{Fl}(\mathbb{C}^n)$ above, it follows that the Chow ring $A^{\cdot}(\operatorname{Fl}(\mathbb{C}^n))$ has a \mathbb{Z} -basis given by $[X_w]$'s.

Question 25. What is the Poincare polynomial of $A^{\cdot}(\operatorname{Fl}(\mathbb{C}^n))$? Since deg $[X_w] = \operatorname{codim} X_w = \ell(w)$, it's

$$\sum_{i\geq 0} q^i \dim A^i(\operatorname{Fl}(\mathbb{C}^n)) = \sum_{w\in S_n} q^{\operatorname{deg}[X_w]} = \sum_{w\in S_n} q^{\ell(w)}$$
$$= [n]_q! = [n]_q[n-1]_q \cdots [1]_q$$

where $[k]_q = 1 + q + \cdots + q^{k-1} = \frac{q^k-1}{q-1}$. The second-to-last equality is a classical result (set $x_i = q$ in the natural Inv generating function). MacMahon famously showed the same statement holds if $\ell(w)$ is replaced by the "major index" of w.

Question 26. What is the ring structure of $A^{\cdot}(\operatorname{Fl}(\mathbb{C}^n))$? More precisely, let $s_w := [X_w]$. We have

$$s_u s_v = \sum_{w \in S_n} c_{uv}^w s_w.$$

What are the structure constants $c_{uv}^w \in \mathbb{Z}$?

Example 27. We have $s_{id}s_w = [X_{id} \cap X_w] = [X_w] = s_w$, so $s_{id} = 1$ and $c_{id,v}^w = \delta_{vw}$.

Theorem 28. $c_{uv}^w \ge 0$. Moreover, c_{uv}^w counts the number of points in a certain "generic" intersection of three Schubert varieties.

Proof. If $\ell(u) = \ell(v)$, then one may check $s_u s_{w_0 v} = \delta_{uv} s_{w_0}$ geometrically using "opposite" flags. By grading, $c_{uv}^w = 0$ unless $\ell(u) + \ell(v) = \ell(w)$. Hence

$$s_u s_v s_{w_0 w} = \sum_{\substack{w' \in S_n \\ \ell(w') = \ell(u) + \ell(v)}} c_{uv}^w s_{w'} s_{w_0 w} = c_{uv}^w s_{w_0}.$$

Remark 29. For certain u, v, w, we have

 $c_{uv}^w = c_{\mu\nu}^{\lambda}$ = the classical Littlewood-Richardson coefficients = #semi-standard Young tableaux of shape λ/μ , weight ν , Yamanouchi.

We next define the Schubert polynomials $\mathfrak{S}_w \in \mathbb{Z}[x_1, x_2, \ldots]$ for $w \in S_\infty := \bigcup_{i \ge 1} S_i$ where $S_i \hookrightarrow S_{i+1}$ is given by fixing i + 1.

Definition 30. Define $\partial_i \in \operatorname{End}_{\mathbb{Z}}(\mathbb{Z}[x_1, x_2, \ldots])$ by $\partial_i f := \frac{f - s_i \cdot f}{x_i - x_{i+1}}$ where $s_i \cdot f$ means to interchange x_i, x_{i+1} . **Fact 31.** $\partial_i^2 = 0, \ \partial_i \partial_j = \partial_j \partial_i$ if |i - j| > 1, and $\partial_i \partial_{i+1} \partial_i = \partial_{i+1} \partial_i \partial_{i+1}$.

For a reduced expression $w = s_{i_1} \cdots s_{i_{\ell(w)}}$, define

$$\partial_w := \partial_{i_1} \cdots \partial_{i_{\ell(w)}}$$

This is well-defined since reduced words are connected by braid moves. Now define the Schubert polynomials

$$\mathfrak{S}_{w_0} \coloneqq x_1^{n-1} x_2^{n-2} \cdots x_{n-1}^1 \qquad (w_0 \in S_n)$$

$$\mathfrak{S}_w \coloneqq \partial_{w^{-1}w_0} \mathfrak{S}_{w_0} \qquad (w \in S_n)$$

(This indeed respects the inclusions $S_n \hookrightarrow S_{n+1}$.)

Theorem 32. (Lascoux-Schutzenberger, Bernstein-Gelfand-Gelfand, Demazure) Let " $A^{\cdot}(\operatorname{Fl}(\mathbb{C}^{\infty}))$ " denote the "limiting ring" of the $A^{\cdot}(\operatorname{Fl}(\mathbb{C}^{n}))$'s. Then

$$A^{\cdot}(\operatorname{Fl}(\mathbb{C}^{\infty})) \xrightarrow{\sim} \mathbb{Z}[x_1, x_2, \ldots]$$

 $s_w \mapsto \mathfrak{S}_w$

is a ring isomorphism. (The x_i 's in the above are essentially Chern roots. For many more details and a significant generalization in a readable account, see Fulton's "Flags, ..., Degeneracy Loci" (1991).)

Open Problem 33. By the theorem, $\mathfrak{S}_u \mathfrak{S}_v = \sum_{w \in S_\infty} c_{uv}^w \mathfrak{S}_w$ where $c_{uv}^w \ge 0$. A large open problem is to show $c_{uv}^w \ge 0$ "combinatorially", so for instance to interpret c_{uv}^w as counting combinatorially defined objects like $c_{\mu\nu}^{\lambda}$ does.

We turn to our third example:

Question 34. When is X_w singular?

Theorem 35. (Lakshmibai-Sandhya, 1990) X_w is smooth if and only if w avoids 3412 and 4231. (This occurs if and only if the Poincare polynomial of X_w , $\sum_{v \leq w} q^{\ell(v)}$, is palindromic. For this and more, see Billey-Abe (2013).)

Proof. (Sketch.) (See Manivel, "Symmetric ..., Degeneracy Loci", Theorem 3.7.5.)

(1) The singular locus of X_w is a union of some X_u 's with $u \leq w$.

(2) One can describe $I(X_w)$ sufficiently well to apply the Jacobian criterion.

(3) By combinatorially computing tangent space dimensions, one gets

$$\begin{aligned} X_w \text{ is singular on } X_v \ (v \leq w) \Leftrightarrow \ell(w) < \#\{i < j : vt_{ij} \leq w\} \\ X_w \text{ is smooth} \Leftrightarrow \ell(w) = \#\{i < j : t_{ij} \leq w\} \end{aligned}$$

(where t_{ij} interchanges *i* and *j*).

(4) Do a combinatorial analysis using the last condition to deduce the result.

We end with an oddity of a much different flavor.

Definition 36. Define the two-sided Eulerian polynomials

$$A_n(s,t) := \sum_{w \in S_n} s^{\# \operatorname{Des}(w^{-1}) + 1} t^{\# \operatorname{Des}(w) + 1}$$

where the (one-sided) Eulerian polynomials are $A_n(t) := A_n(1, t)$.

Fact 37. (1) $A_n(t) = \sum_{i=1}^{\lceil n/2 \rceil} \gamma_{i;n} t^i (1+t)^{n+1-2i}$ for unique $\gamma_{i;n} \in \mathbb{Z}$;

- (2) $\gamma_{i;n} \ge 0$
- (3) There exists a very nice combinatorial proof of (2);
- (4) $A_n(s,t) = \sum_{i,j} \gamma_{i,j;n}(st)^i (s+t)^j (1+st)^{n+1-j-2i}$ for unique $\gamma_{i,j;n} \in \mathbb{Z}$;
- (5) $\gamma_{i,j;n} \geq 0$
- (6) There currently only exists a recursive, in some sense unenlightening proof of (5) (see recent work of Zhicong Lin).

((5) is often called Gessel's conjecture.)

Open Problem 38. Is there a combinatorial proof of (5)? Is there a *geometric* proof?

Note to self: this was a bit long (approximately 70 minutes) and generally was too full of content. Go at a slower pace; probably cut out the pure Coxeter group theory section and the precise Schubert polynomial definition (though keep positivity) and go more leisurely through everything, especially the examples. Also, add a few more words on the Jacobian criterion and what $I(X_w)$ really means in this context.