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Abstract. These are lecture notes for a seminar organized around Mark
Haiman’s 2001 proof [Hai01] of the Macdonald Positivity Conjecture. It
was held at the University of Washington during Spring and Summer,
2016.
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2 JOSH SWANSON

1. Milieu: So many symmetric functions, q, t-Kostka polynomials,
and graded representations.

Lecturer: Josh Swanson.

Our first objective is to summarize some of the story behind Haiman’s
proof [Hai01] of the Macdonald Positivity Conjecture [Mac95, “(8.18?)”].
Our goals include defining Kλµ, Kλµ(t), Kλµ(q, t), and associated symmetric
functions. Along the way we give representation-theoretic interpretations in
the 0- and 1-parameter cases and discuss a “proof prototype” due to Garsia-
Procesi [GP92] which in many ways mirrors Haiman’s proof. We conclude
by stating the 2-parameter interpretation conjectured by Garsia-Haiman
[GH96], along with the so-called n! conjecture it was reduced to.

1.1. Symmetric Functions Summary. We begin with an unavoidable
slog through standard notation and concepts. One goal is to illustrate how
relevant properties of symmetric functions arise immediately and naturally
from representation theory. [Mac95] is a standard reference with an absolute
wealth of information, though [Sag91], [Sta99], and [Ful97] are more readable.

We write α � n to mean α = (α1, . . . , αk) is a weak composition of n,
namely αi ≥ 0,

∑
i αi = n. Also write µ ` n to mean µ = (µ1, . . . , µk) is an

(integer) partition of n, namely µ1 ≥ µ2 ≥ · · · ≥ 0,
∑

i µi = n. We imagine
µ as a subset of lower-left justified boxes in the plane where µi denotes the
number of boxes in row i. One major source of partitions comes from the
conjugacy classes of the symmetric group—the cycle type of such a class is
simply a partition which records the cycle lengths.

Sn acts naturally on R[x1, . . . , xn] by σ · xi = xσ(i). We’re interested in

symmetric polynomials, so elements of R[x1, . . . , xn]Sn . Some nice ones:

• Set xα := xα1
1 · · ·x

αk
k . Take mα :=

∑
β∼α x

β to be the monomial sym-

metric polynomials. Obviously {mλ}λ`m is an R-basis for the degree
m component of R[x1, . . . , xn]Sn . This is the “most obvious”/“most
trivial” R-linear basis, but expanding products mµmν back in this
basis is awful/rarely done.
• Let hi :=

∑
α�i x

α (where α has at most n parts) and take hµ :=∏
i hµi to be the complete homogeneous symmetric polynomials. Not

obviously an R-basis, but products are trivial.
• eµ :=

∏
i eµi where

n∑
i=0

ei(x1, . . . , xn)tn−i :=

n∏
j=1

(t+ xj)

are the elementary symmetric polynomials.
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• pµ :=
∏
i pµi where

pi(x1, . . . , xn) =
n∑
j=1

xij

are the power-sum symmetric polynomials.
• sµ, the Schur polynomials, discussed shortly.

Fact 1.1. Letting µ vary over “certain” partitions, each of these forms
an R-basis for R[x1, . . . , xn]Sn (for pi’s, need charR = 0). Particularly,
{h1, . . . , hn} is thus an algebraic basis for R[x1, . . . , xn]Sn . But why? We’ll
next give a quick representation-theoretic motivation which also constructs
the sµ.

Example 1.2. Let V := Cn have basis {v1, . . . , vn}. Let GL(V ) act on V ⊗k

by linear substitutions. This descends to an action of GL(V ) on Symk V ,
the kth symmetric power of V , so we have a nice finite-dimensional GL(V )-
representation. The Schur character of such a representation is the function
which records the traces of the actions of diagonal matrices, which we now
compute.

A basis for Symk(V ) is

{vi1 · · · vik : 1 ≤ i1 ≤ · · · ≤ ik ≤ n} =: {vα : α � n has k parts}

(where α` records the number of times ij = `). Now

diag(x1, . . . , xn)vi1 · · · vik = x1 · · ·xn(vi1 · · · vin) = xαvα,

so that

TrSymk(V )(diag(x1, . . . , xn)) =
∑
α�k

xα = hk(x1, . . . , xn).

We summarize this by saying ch Symk(V ) = hk. Since characters are multi-
plicative under tensoring, we also have

Symµ(V ) := ⊗k Symµk(V )

ch Symµ(V ) = hµ(x1, . . . , xn).

Aside 1.3. Under Schur-Weyl duality, Symµ is equivalent to inducing the
trivial character of Sµ to S|µ|, which is the same as the natural representation
on the parabolic quotient Sµ/S|µ|. An analogous construction with exterior
powers yields eµ.

Remark 1.4. Why are the hµ a basis? The reason runs through the
irreducible (polynomial, complex) representations of GL(V ). As it turns out,
the Symµ’s are almost never irreducible. One may systematically construct
irreducible representations Eλ of GL(V ) naturally indexed by a partition λ
(with at most n parts); see [Ful97] for details. The Schur character chEλ are
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certain polynomials sλ(x1, . . . , xn). Indeed, since such GL(V ) representations
are completely reducible, we must have

hµ =
∑
λ

Kλµsλ

where Kλµ is the multiplicity of Eλ in Symµ. These are the classical Kostka
numbers. As it turns out, Kλµ can be seen as an invertible matrix, and the
sλ must be linearly independent, so the hµ are linearly independent.

Aside 1.5. A trivial observation: whatever sµsν ends up being, it’s certainly
a non-negative integer linear combination of sλ’s, by the same argument. In
this way representation theory can give positivity results trivially.

Remark 1.6. It gets tedious to carry around a fixed number n of variables
(e.g. “certain partitions” above), and more importantly there are natural
quotient maps C[x1, . . . , xn] � C[x1, . . . , xn−1] (xn 7→ 0), and there are
natural inclusions Sn−1 ↪→ Sn (fix n), which all the above bases respect in
natural ways. The literature very often avoids these trivialities by “taking
n→∞” in the following sense.

Definition 1.7. Let Λ denote the ring of formal power series in x1, x2, . . .
with coefficients in R of bounded total degree which are fixed under the
natural S∞ := lim

−→
Sn-action. Λ is the ring of symmetric functions. All of

our previous bases lift naturally to Λ. For instance,

p3 = x31 + x32 + · · · , e2 = x1x2 + x1x3 + · · ·+ x2x2 + · · · .
(“Bounded total degree” can safely be ignored virtually always.)

Fact 1.8. Some facts to keep things in perspective:

• s(i) = hi, s(1i) = ei
• hµ = sµ +

∑
λ>µKλµsλ

• sλ = mλ +
∑

µ<λKλµmµ

• sλ is the “content generating function for semi-standard Young
tableaux of shape λ”
• Kλµ counts the number of “semi-standard Young tableaux of shape
λ and weight µ”

1.2. Hall-Littlewood Functions, Kλµ(t). Symmetric functions and the
bases just described are shockingly ubiquitous. We next describe Hall-
Littlewood polynomials which generalize Schur polynomials and which come
with polynomials Kλµ(t). Along the way we introduce an algebra, the Hall
algebra, which is graded by the Grothendieck group. [Mac95] is again the
standard reference, though see also [Sch12] for a more modern, general, and
readable account.

Definition 1.9. Fix p prime. An abelian p-group A has A ∼= ⊕iZ/pλi for
some λ ` n with |A| = pn called the type of A. Write the isomorphism class
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of A as [λ]. Let Hp be the free Z-module with basis {[λ]}. Define a product
on Hp by

[µ][ν] :=
∑
λ

Gλµν(p)[λ]

where having fixed A ∈ [λ] we set

Gλµν(p) := #{N ⊂ A : N ∈ [ν], A/N ∈ [µ]}.

(Roughly, [µ][ν]’s [λ] coefficient is the number of distinct extensions 0 →
[ν] → [λ] → [µ] → 0, where twisting [ν] or [µ] by automorphisms does not
count as distinct.)

Theorem 1.10 (Hall [Hal59]; see also Steinitz [Ste01]). Hp is a unital,

associative, commutative algebra. Furthermore, Gλµν(t) ∈ Z[t], so there is a
“universal” (classical) Hall algebra H, which is a Z[t]-algebra with structure
constants Gλµν(t). In fact, H has algebraic basis {[(1i)]}∞i=1.

In light of Hall’s theorem, there is a relatively natural algebra isomorphism

H
π→ Λ[t, t−1]

[(1r)] 7→ t−r(r−1)/2er.

(where on the left we view H as a Z[t, t−1]-algebra).

Aside 1.11. Why that particular t factor? Some t-dependence is good, and
as it turns out there is a natural coalgebra structure on H and Λ[t, t−1] for
which this map yields a bialgebra morphism.

Definition 1.12 (See [Mac95, III, (3.4), p. 217]). The Hall-Littlewood sym-
metric functions are functions Pλ ∈ Λ[t] defined by

t−n(λ)Pλ(x1, x2, . . . ; t
−1) := π([λ]) ∈ Λ[t]

where n(λ) :=
∑

i(i− 1)λi.

Example 1.13. At λ = (1r), we have n(λ) = 0+1+· · ·+(r−1) = r(r−1)/2.
It follows that P(1r)(x; t) = er.

Aside 1.14. There is a direct formula for (the polynomial version of) Pλ
due to Littlewood [Lit61], which is discussed in [Mac95, III, §1]. Explicitly,
if λ = (λ1, . . . , λn) = 1m12m2 · · · , then

Pλ(x1, . . . ,xn, 0, 0, . . . ; t)

=

∏
i≥1

[mi]t!

−1 ∑
w∈Sn

w

xλ∏
i<j

xi − txj
xi − xj

 ∈ Z[x1, . . . , xn; t]

where [c]t! := [c]t[c− 1]t · · · [1]t and [c]t := 1 + t+ · · ·+ tc−1 as usual. From
either our definition or (the n→∞ limit of) Littlewood’s formula, we only
have Pλ ∈ Λ[t, t−1] or Λ(t).
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There is a very similar formula which is a sum over a quotient of Sn by a
Young subgroup [Mac95, III, (2.2)] which manifestly exhibits the stability
Pλ(x1, . . . , xn, 0; t) = Pλ(x1, . . . , xn; t). Without dividing off the extra t term,
the result is not stable.

The following suggests this set of symmetric functions is interesting:

Fact 1.15. (See [Mac95, III, §2])
• {Pλ} is a Z[t]-basis for Λ[t]
• Pλ(t = 1) = mλ

• Pλ(t = 0) = sλ
• Pλ(t = −1) =“Schur P -function of shape λ
• P(1r)(t) = er

Aside 1.16. See Stembridge [Ste89] for more information about Schur P -
functions. Very roughly, they play a role analogous to the Schur functions but
in the projective representation theory of symmetric groups. For instance,
they have a nice combinatorial generating function formula in terms of
“shifted marked tableaux.”

There is a vast generalization of the above Hall algebra construction that
works for abelian categories with appropriate finiteness constraints that often
yields algebras with more structure, “Hall Hopf algebras.” In general the
structure constants involve a certain scalar product involving Ext of the
subgroup and quotient, though this part is trivial in the classical case above.
Some naturality arises already from observing that the Hall algebra is graded
by the Grothendieck group. A particular case of the construction is for the
category of coherent sheaves on a smooth projective curve over Fq, which
has been somewhat famously considered by Kapranov [Kap97] for P1. For
more information, see Schiffmann [Sch12].

Definition 1.17. Since {Pλ} is a Z[t]-basis for Λ[t], we have transition
coefficients

sλ =:
∑
µ

Kλµ(t)Pµ(t)

for some Kλ,µ(t) ∈ Z[t]. We call these the t-Kostka polynomials. For instance,

Kλµ(1) = Kλµ, Kλµ(0) = δλµ.

The change-of-basis matrix from {sλ} to {Pµ} is again upper-triangular.
In fact, we have [Mac95, III, (6.5)(ii)] Kλµ(t) is monic of degree n(µ)− n(λ)
when λ ≥ µ and is zero otherwise.

Remark 1.18. Macdonald [Mac95, III, §6] lists all Kλµ(t) for n ≤ 6, and
they have non-negative coefficients. We have both combinatorial and rep-
resentation theoretic interpretations of Kλµ(1) = Kλµ and Kλµ(0) = δλµ,
so we could hope the same is true of Kλµ(t) in general. Indeed, Lascoux-
Schützenberger [LS78] gave a proof (outline) of a combinatorial interpretation,
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namely Kλµ(t) is the charge generating function on SSYT(λ, µ), which we
will not define.

Aside 1.19. There is at present no combinatorial analogue of the charge
statistic for the q, t-Kostkas defined below. Charge itself is quite compli-
cated to describe, and Lascoux-Schützenberger’s identification of charge is
celebrated as a particularly deep combinatorial result.

1.3. Springer Fibers: Kλµ(t) ∈ N[t]; Garsia-Procesi. A “baby” version
of Haiman’s proof is Garsia-Procesi’s argument [GP92] for the positivity
of Kλµ(t). It built on a lengthy and intricate series of topological and
algebro-geometric arguments due to Kostant [Kos63], Steinberg [Ste76],
Hotta-Springer [HS77], Kraft [Kra81], de Concini-Procesi [DCP81], and
others. Garsia-Procesi decided the barrier to entry to understand those
arguments was too high and replaced as much as possible with explicit
presentations of rings and the construction of a basis. We outline both
approaches—the geometric approach serves as motivation, and the explicit
approach was more or less extended by Haiman.

The original geometric argument is described briefly in [Mac95, III, §7,
Ex. 8] which we now summarize.

Definition 1.20. Set V := Cn and pick µ ` n. Pick a matrix u in Jordan
Normal Form with 1’s along the diagonal whose block sizes are recorded by
µ. (That is, u is a unipotent endomorphism of V of type µ.) Let Xµ be
the set of complete flags on V fixed by u, which is called a Springer fiber.
(These are geometrically fibers of a resolution of singularities introduced by
Springer [Spr69].)

Fact 1.21. Xµ is a closed subvariety of the complete flag manifold of complex
dimension n(µ). There is a graded Sn-action on the rational cohomology
H∗(Xµ); see [HS77]. In fact, Xµ has one connected component for each

standard Young tableau of shape µ. One might then guess that H2n(µ)(Xµ)
might have the same dimension as Sµ, so perhaps the action is precisely Sµ.
(Warning: the Xµ are not in general smooth.)

Example 1.22. At µ = (1n), we have u = 1, so X(1n) is the complete flag
manifold, which is in particular smooth and connected of complex dimension
n2− (1 + 2 + · · ·+n) = n(n−1)/2. A famous presentation for this H∗(X(1n))
due to Borel [Bor53] is Q[x1, . . . , xn]/(e1, . . . , en), which comes with a natural
grading and Sn-action. It is well-known that the top-dimensional component
carries the sign representation, i.e. is isomorphic to S(1n).

Jusifying the 2 parameter version of the following 1 parameter theorem is
essentially the point of this seminar:

Theorem 1.23 ([GP92]). The coefficient of tk in Kλµ(t) is the multiplicity

of Sλ in H2i(Xµ) where i := n(µ)− k.
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Example 1.24. Set t = 0 to get Kλµ(0) = δλµ, so H2n(µ)(Xµ) is Sµ as an
Sn-module. Our earlier guess was hence correct!

We will now summarize [GP92]. Many of the large-scale ideas recur
in Haiman’s proof [Hai01], though the specifics are significantly different.
Garsia-Procesi begin with a short, explicit presentation of H∗(Xµ) (due to
de Concini-Procesi [DCP81]) generalizing the above presentation for the
complete flag manifold.

Definition 1.25. Fix a partition µ ` n. Let

Rµ := Q[x1, . . . , xn]/Iµ

where Iµ is a homogeneous ideal generated by certain “er(S)’s”; we will not
be concerned with the precise definition, which is in [GP92, (I.5)]. This
comes with the natural induced graded Sn-action, and H∗(Xµ) ∼= Rµ as
graded Sn-modules.

Example 1.26. At µ = (1n), one has I(1n) = (e1, . . . , en), so R(1n) is the
coinvariant algebra of Sn. By Chevalley [Che55], R(1n) is isomorphic to the
regular representation CSn as Sn-modules, which is the µ = (1n) case of the
next theorem.

Theorem 1.27 (de Concini-Procesi [DCP81]). Rµ ∼= 1↑SnSµ (which is the

Schur-Weyl dual of Symµ above).

Aside 1.28. This result serves as motivation for the [GP92] result above,
since it is the t = 1 (“ungraded”) case.

Again using the coinvariant algebra as a model, the Poincare polynomial
of the coinvariant algebra is well-known to be [n]q! =

(
n

1,...,1

)
q
. In particular

it has dimension n!, and interestingly it comes with a basis

{xa11 · · ·x
an
n : ai ≤ n− i}.

Garsia-Procesi showed the Poincare polynomial of Rµ is another (generally
different) q-analogue of

(
n
µ

)
:=
(

n
µ1,...,µk

)
, so in particular dimRµ =

(
n
µ

)
.

Garsia-Procesi give an explicit algorithm for constructing a proposed mono-
mial basis for Rµ generalizing the µ = (1n) case above, which has the desired
number of elements and is a spanning set. (We have no need to describe the
specifics, though see [GP92, §1].)

To show linear independence, they use an elementary version of an argu-
ment due to Kraft [Kra81]. He gave a construction analogous to Springer’s,
but this time considering the coordinate ring of the scheme-theoretic inter-
section of a conjugacy class closure and a Cartan subalgebra. Garsia-Procesi
write this ring as a certain very explicit quotient Aµ, which is an ungraded
Sn-module. They use the natural filtration on Aµ and essentially show Rµ is
the corresponding associated graded algebra, while simultaneously deducing
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a graded branching rule for restricting Rµ to Sn−1 which becomes the key
ingredient for proving the above theorem.

Aside 1.29. Discussing the geometric details behind the constructions of
Springer [Spr69] and Kraft [Kra81] and their relation to Weyl group actions
on cohomology could be a lovely later lecture.

Corollary 1.30 ([GP92]). If ν ≥ µ in dominance order, then Iν ⊃ Iµ, so
Rν ∼= Rµ/Iν , and Kλν(q) ≤ Kλµ(q) (coordinate-wise).

1.4. Macdonald Symmetric Functions; Kλµ(q, t). Haiman [Hai01] in
some sense pushed through the Garsia-Procesi approach to a 2-parameter
generalization of Kλµ(t), which we now describe. Macdonald [Mac95, VI]
was combinatorially motivated to define a two-parameter basis of symmetric
functions including most of the ones we’ve already encountered as specializa-
tions. Here we will take R = Q so that we may freely use the pµ basis. Our
exposition follows Macdonald’s.

Definition 1.31. There is a “natural” scalar product on Λ given by

〈sµ, sν〉 := δµν ,

or alternatively 〈pλ, pµ〉 := δλµzλ where zλ := the order of the centralizer of
any permutation of cycle type λ.

Moreover, {sλ} is the unique basis of Λ such that

(1) the {sλ} are pairwise orthogonal under 〈−,−〉
(2) there is a strictly upper unitriangular change of basis

sλ = mλ +
∑
µ<λ

cλµmµ

for some cλµ (= Kλµ).

Indeed, existence would follow from the Gram-Schmidt procedure if we
were using a total order, though uniqueness follows from unitriangularity in
general. Hence these conditions overdetermine {sλ}, and in that sense their
existence is remarkable.

The Hall-Littlewood polynomials satisfy the same uniqueness statement
for Λ(t) (replacing sλ with Pλ but keeping the mλ) using

〈pλ, pµ〉t := δλµzλ(t) := δλµzλ

`(λ)∏
i=1

(1− tλi)−1.
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The “zonal polynomials” and more generally “Jack’s symmetric functions”
have very similar possible definitions. A relatively natural, common general-
ization of all of these is to use Λ(q, t) with scalar product

〈pλ, pµ〉q,t := δλµzλ(q, t) := δλµzλ

`(λ)∏
i=1

1− qλi
1− tλi

.

Theorem 1.32 (Macdonald, [Mac95, IV, (4.7)]). There is a unique Q(q, t)-
basis {Hλ(x1, x2, . . . ; q, t)} for Λ(q, t) which is pairwise orthogonal under
〈−,−〉q,t and where

Hλ(x; q, t) = mλ(x) +
∑
µ<λ

cλµ(q, t)mµ(x).

These are called the Macdonald symmetric functions.

Example 1.33. Limiting cases:

• q = t⇒ Hλ(q, q) = sλ
• q = 0⇒ Hλ(0, t) = Pλ(t)
• q = tα, t→ 1 gives Jack’s symmetric functions

Macdonald defined the q, t-Kostka polynomials [Mac95, VI, (8.11)], written
Kλµ(q, t), as the coefficients of a certain transition matrix from the integral
form Macdonald polynomials Jµ, which are a slight rescaling of the Hµ, to (an
easy plethysm of) the Schur functions. Garsia-Procesi’s result was naturally

phrased in terms of a mild variant on Kλµ(t), namely tn(µ)Kλµ(t−1), and
the same is true in Haiman’s work, where he used the modified Macdonald

polynomials H̃λ. These are a simple plethystic substitution away from the
Macdonald polynomials; we will define these notions precisely as needed, but
those details are not presently important.

Aside 1.34. Of the three variants Hµ, Jµ, H̃µ, the Macdonald polynomials
Hµ seem to mainly arise naturally from certain considerations from theoretical
physics. Indeed, Macdonald constructed them as the eigenvectors of a certain
self-adjoint operator [Mac95, VI, (4.7)]. The modified Macdonald polynomials
seem to be more useful for representation theory and combinatorics, as we

shall see. In particular, we will see a combinatorial interpretation of H̃µ(x; q, t)
due to Haglund-Haiman-Loehr [HHL05a]. The integral forms rarely seem to
appear except as a stepping stone between other points of interest.

Warning: Beware of conflicting terminology in the literature for the
Macdonald polynomials, their integral forms, and the modified Macdonald
polynomials. In particular some authors write Hµ for what we have called

H̃µ, and [Mac95] writes Pµ for what we have called Hµ.
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Definition 1.35. The modified Macdonald polynomials come with modified
q, t-Kostka polynomials

K̃λµ(q, t) := tn(µ)Kλµ(q, t−1)

which in fact satisfy

H̃µ(x; q, t) =
∑
λ

K̃λµ(q, t)sλ(x).

Some facts:

• Kλµ(0, t) = Kλµ(t), so Kλµ(0, 1) = Kλµ.
• Kλµ(q, t) = Kλ′µ′(t, q), where λ′ denotes the conjugate partition of
λ.
• Kλµ(1, 1) = dimSλ (= Kλ,(1n))
• Warning: Kλµ(0, t) is upper triangular while Kλµ(q, 0) is lower trian-

gular, which is a consequence of λ ≥ µ⇔ λ′ ≤ µ′ and the preceding
bullet point.

1.5. Garsia-Haiman’s attack on Kλµ(q, t) ∈ N[q, t]. Macdonald conjec-
tured Kλµ(q, t) ∈ N[q, t]. From the definition, we only have Kλµ(q, t) ∈
Q(q, t). Garsia-Haiman essentially conjectured that a variation on Garsia-
Procesi’s argument should exist to handle this conjecture, which they were
quickly able to make precise and which we next describe.

Aside 1.36. Five separate papers appeared in 1996-1998 showing Kλµ(q, t) ∈
Z[q, t], but positivity remained open until Haiman’s 2001 proof [Hai01]. See
the introduction to [Hai01] for further references.

Definition 1.37. Fix n and let C[x,y] := C[x1, . . . , xn, y1, . . . , yn]. Now Sn
acts “diagonally” on C[x,y] via

σ · xi := xσ(i), σ · yi := yσ(i).

A detailed study of the coinvariant algebra proved very fruitful above, so
perhaps we should consider the ring of diagonal coinvariants

C[x,y]/C[x,y]Sn+

where C[x,y]Sn+ denotes the ideal generated by elements of C[x,y]Sn without
constant term. Indeed, this is a bigraded Sn-module.

Aside 1.38. Warning: In contrast to the coinvariant algebra, C[x,y]Sn is
not a polynomial ring. This is an instance of the Chevalley-Shephard-Todd
theorem; see [Hum90, Thm. 3.11] for a precise statement. The trouble is
essentially that Sn acting diagonally on SpanC{e1, . . . , en, f1, . . . , fn} is not
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generated by pseudoreflections. The denominator at least has an “obvious”
generating set (attributed to Weyl) along the lines of the pi, namely

C[x,y]Sn+ =

(
n∑
i=1

xhi y
k
i : h, k ≥ 0, h+ k > 0

)
.

Definition 1.39. Pick a set of n points in N× N,

D := {(p1, q1), . . . , (pn, qn)}.

Define

∆D := det(x
pj
i y

qj
i )1≤i,j≤n.

(This is well-defined up to ±1 since we didn’t order our set.) Given a partition
µ, take µ ⊂ N× N by indexing from zero.

Example 1.40. If D = {(0, 0), (0, 1), . . . , (0, n− 1)}, then ∆D = det(yji ) =
∆(1n) is the Vandermonde determinant. In general, ∆µ(x, y) = ∆µ′(y, x).

Definition 1.41. Now let

Dµ := C[∂x, ∂y]∆µ

be the space spanned by all iterated partial derivatives of ∆µ. Dµ has a
doubly-graded Sn-action inherited from C[x,y].

Example 1.42. For µ = (2, 1), we find

∆(2,1) =

1 y1 x1
1 y2 x2
1 y3 x3

 = y2x3 − x2y3 − y1x3 + y1x2 + x1y3 − x1y2.

Taking partial derivatives yields

{∆(2,1), y3 − y2, y1 − y3, y2 − y1, x3 − x2, x1 − x3, x2 − x1, 1}.

Note that y2 − y1 and x2 − x1 (say) are redundant, so Dµ has a basis of
precisely 6 elements.

Aside 1.43. The diagonal coinvariants are a quotient of C[x,y], and one may
express the Dµ in the same way. Namely, [Hai99, Prop. 3.4] Dµ is isomorphic
as a doubly graded Sn-representation to the quotient of C[x,y] by the ideal
of polynomials p(x, y) for which p(∂x, ∂y) annihilates ∆µ, which we will use
later. This can be run in reverse, and one often hears about the diagonal
harmonics, which are roughly the subset of C[x,y] consisting of polynomials f

such that C[∂x, ∂y]Sn+ · f = 0. See [Hai99, §7] for a more complete discussion.
The name arises from the fact that the diagonal harmonics are in particular
harmonic polynomials in the classical sense.

Indeed, the ∆µ form a basis for the space of alternating polynomials in
C[x,y], i.e. the subspace of f ∈ C[x,y] where w ·f = sgn(w)f for all w ∈ Sn.
We will encounter this subspace again in the next section.
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Describing Haiman’s proof of the following conjecture is the main goal of
this seminar:

Conjecture 1.44 (Garsia-Haiman [GH96]).

K̃λµ(q, t) =
∑
r,s

trqs(multiplicity of Sλ in (Dµ)r,s)

Corollary 1.45. The Macdonald positivity conjecture is true.

Describing Haiman’s reduction of the preceding conjecture to the following
conjecture and certain geometric equivalents will be one of our main topics:

Conjecture 1.46 (Garsia-Haiman [GH96]; “n! conjecture”). dimDµ = n!.

Remark 1.47. The first conjecture implies the n! conjecture as follows.

Setting t = q = 1, K̃λµ(1, 1) = dimSλ, so Dµ has the same number of

copies of Sλ as CSn. Hence Dµ
∼= CSn as Sn-modules, so in particular their

dimensions agree. Remarkably, [GH96] proved the reverse implication.

Haiman [Hai99], following up on a suggestion of Procesi, conjectured a
connection between the n! conjecture, and the “isospectral Hilbert scheme”
Xn arising from the Hilbert scheme of points in the plane C2. In particular,
Haiman showed that the n! conjecture is equivalent to the statement that
“Xn is Cohen-Macaulay,” which implies the first conjecture and hence the
Macdonald positivity conjecture. The details of this connection will be the
focus of later lectures.

2. Aftermath: Diagonal coinvariants, k-Schur functions, and
equivalences of derived categories

Lecturer: Josh Swanson.

Having motivated Haiman’s proof [Hai01], we pause to describe three very
different directions follow-up work has taken. Indeed, to avoid getting too
side-tracked, we only discuss k-Schur functions and diagonal coinvariants in
any detail here. Dan will give a later lecture on derived category equivalences.

2.1. Equivalences of derived categories. A sample paper in this direc-
tion is [GS04], and the abstract gives a flavor for these results: “We give
an equivalence of triangulated categories between the derived category of
finitely generated representations of symplectic reflection algebras associated
with wreath products (with parameter t = 0) and the derived category of
coherent sheaves on a crepant resolution of the spectrum of the centre of
these algebras.” See Dan’s lecture for more.
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2.2. k-Schur functions. The k-Schur functions A
(k)
µ (X; t) were introduced

in [LLM03] as roughly

A(k)
µ (x; t) :=

∑
T∈A(k)

µ

tcharge(T )sshape(T )(x)

In fact, one has A
(k)
µ (x; t) = sµ(x) when k ≥ |µ|; the only term in the sum

is the “trivial” semistandard tableau of shape µ whose ith row consists of i’s
(which has charge 0). See [LLM03, Property 6] for more details.

Recall that Kλµ(t) is a charge generating function; indeed A
(k)
µ (x; t) were

defined to be “pieces of Macdonald polynomials” in a sense made precise
by [LLM03, (1.6), (1.9)]. They form a basis for the subspace of symmetric
functions spanned by {sλ[X/(1− t)]}λ1≤k. They are related to yet another
slight modification of the Macdonald polynomials via

H ′µ[X; q, t] =
∑
λ

K
(k)
λµ (q, t)A

(k)
λ [X; t]

with (conjecturally)

0 ≤ K(k)
λµ (q, t) ≤ Kλµ(q, t)

pointwise. Indeed, the conjecture is implied by the at first glance weaker

conjecture K
(k)
λµ (q, t) ∈ N[q, t], which in the “k →∞ limit” gives Macdonald’s

positivity conjecture.

The k-Schur functions share an enormous number of similarities with the
Schur functions. They have more than half a dozen conjecturally equivalent
definitions; the standard reference is [LLM+14].

We mention one further topological connection. Bott [Bot58] famously
showed the homology and cohomology of the “affine Grassmannian” can
be realized naturally as a subring and quotient of the ring of symmetric
functions, respectively. The affine Grassmannian comes with Schubert classes
indexed by Grassmannian elements of the underlying affine Weyl group. Lam
[Lam08] showed that the homology classes of these Schubert classes under
Bott’s isomorphism map precisely to k-Schur functions.

2.3. Diagonal coinvariants. We encountered diagonal coinvariants above.
For brevity, now write

Rn := C[x,y]/C[x,y]Sn+
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using the previous notation, where for instance x stands for x1, x2, . . . , xn.
A number of questions of varying difficulty quickly come to mind:

Question 2.1. What are...
(i) the dimension of Rn, dimCRn?
(ii) the doubly-graded Hilbert series (polynomial) for Rn,

Hn(t, q) :=
∑
i,j

tiqi(dimC(Rn)i,j) ∈ N[t, q]?

(iii) the doubly-graded Frobenius series for Rn,

Fn(x; t, q) :=
∑
i,j

tiqi(ch(Rn)i,j) ∈ Λ[t, q]?

(Here ch denotes the Frobenius characteristic map, which sends the
Specht module Sλ to the Schur function sλ and is extended additively.)

(iv) combinatorial generating functions for Hn(t, q) and Fn(x; t, q)?

Example 2.2. First consider the analogous questions for the coinvariant
algebra of Sn.

• (i) is just n!, and we exhibited an explicit basis above.
• (ii) is [n]q!, the usual q-analogue of n!, which is also the major index

or inversion number generating function for Sn. Indeed, it is also the
dimension generating function for Schubert varieties in the complete
flag manifold.
• (iii) is given essentially by the shape, maj joint generating function

on standard Young tableaux of size n, which is due independently to
Lusztig (unpublished) and Stanley [Sta79, Prop. 4.11].

Everything about Rn has proven much harder.

We sample some of the early conjectured answers to these questions:

Conjecture 2.3 (See [Hai94] for precise statements). We have...
(a) dimCRn = (n+ 1)n−1.
(b) Hn(1, q) is the inversion generating function on spanning trees on the

set {0, 1, . . . , n} rooted outward from 0.
(c) (“Master formula.”) Define an operator ∇ on symmetric functions over

Q(t, q) by

∇H̃µ := tn(µ)qn(µ
′)H̃µ.

Then Fn(x; t, q) = ∇en(x).

Aside 2.4. The expression (n+ 1)n−1 appears more often than you’d except.
In particular it counts trees as above, or equivalently certain forests; parking
functions of length n; maximal chains of non-crossing partitions of [n+ 1];
regions in the Shi hyperplane arrangement; sand pile partitions; etc. In fact,
Haiman showed that the Sn action on Rn is just the Sn-action on parking
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functions of length n tensored with the sign representation. Note that this
generalizes (a). See [Sta] for a parking function survey.

Indeed, (c) was proved by Haiman in follow-up work [Hai02] to [Hai01],
which was known to imply (a) and (b). This provided at least an implicit
answer to (i)-(iii). A more satisfying answer for (ii) was relatively recently
provided by Haglund, which we now summarize.

Definition 2.5. A Tesler matrix is an upper triangular matrix with non-
negative integer entries whose “hook sums” are all 1. The ith hook sum is
the difference between the sum of the ith row and the non-diagonal elements
of the ith column. Write Tes(n) for the set of n× n Tesler matrices.

Example 2.6. There are seven 3 × 3 Tesler matrices. This list includes
the identity matrix and the matrix whose third column is 1, 1, 3 with 0’s
everywhere else.

Theorem 2.7 ([Hag11]). The doubly-graded Hilbert series for the diagonal
coinvariants Rn is

Hn(t, q) =
∑

T∈Tes(n)

weight(T )

where

weight(T ) := (−(1− q)(1− t))#Pos(T )−n
∏

(i,j)∈Pos(T )

[Ti,j ]q,t

where Pos(T ) denotes the set of indexes of positive entries of T ∈ Tes(n) and
where

[k]q,t := qk−1 + qk−2t+ · · ·+ qtk−2 + tk−1 =
qk − tk

q − t
.

Note, however, that Haglund’s result still involves subtractions. It takes
some effort to recover (a) from the t = q = 0 case of Haglund’s formula. A
vast literature has sprung up around (iv), with the following likely being the
most famous part:

Conjecture 2.8 (Shuffle Conjecture [HHL+05b]). The bigraded Frobenius
series for diagonal coinvariants is given by

Fn(x; q, t) =
∑
λ⊂δn

∑
T∈SSYT(λ+(1n)/λ)

t|δn/λ|qdinv(T )zT .

where dinv(T ) counts the number of “d-inversions” of T and δn is the staircase
shape with longest part n− 1.

Wonderfully, we have the following very recent result due to Carlsson and
Mellit:

Theorem 2.9 ([CM15]). The shuffle conjecture is true.
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Aside 2.10. They actually proved a generalization known as the “composi-
tional shuffle conjecture.” We will likely have a seminar over the summer
dedicated to [CM15] and related theory.

There is another thread giving rise to a q, t-analogue of the Catalan
numbers which we next summarize.

Definition 2.11. Let Γ be the “anti-invariant subspace” of Rn,

Γ := {f ∈ Rn : σ · f = sgn(σ)f ∀σ ∈ Sn}.

The determinants ∆µ above form a basis for the corresponding subspace
of C[x,y]. We have

Theorem 2.12 ([GH02], [Hai02]). The bigraded Hilbert series of Γ is the
generating function ∑

π

tarea(π)qβ(π)

where π ranges over Dyck paths in the n× n square, area(π) is the number
of boxes strictly above the diagonal and at or below π, and β(π) is a statistic
involving a sum over locations of “diagonal corners” of a “billiard ball”
launched through π.

In particular, dim Γ = 1
n+1

(
2n
n

)
is a Catalan number, though this was

known earlier.

We cannot help concluding with another combinatorial result not directly
related to diagonal coinvariants. The modified Macdonald polynomials have
a beautiful combinatorial generating function due to Haglund-Haiman-Loehr
[HHL05a]. We will not take the time to define the statistics precisely, but
[HHL05a] is quite lucid.

Theorem 2.13 ([HHL05a]). We have

H̃µ(x; q, t) =
∑

σ : µ→Z+

qinv(σ)tmaj(σ)xσ

where µ is viewed as a set of cells, inv(σ) is a certain sum of “arm lengths”
over “attacking pairs” which give inversions of the reading word, and maj(σ)
is a sum over “leg lengths” for descents in the usual sense.

Consequently, H̃µ(x; q, t) ∈ N[x; q, t].

Since H̃µ(x; q, t) =
∑

λ K̃λµ(q, t)sλ(x), a combinatorial interpretation of
the Schur decomposition of the preceding combinatorial sum is equivalent to
a combinatorial interpretation of the q, t-Kostka polynomials, which is a big
open problem in algebraic combinatorics.

(Note to self: read Haglund’s “Genesis” survey article.)
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3. Overview of Haiman’s Proof

Lecturer: Josh Swanson.

Summary. Today we give a “panoramic overview” of Haiman’s proof of the
Macdonald positivity conjecture [Hai01], [Hai99]. We will encounter many
“black boxes,” and in the next few lectures we will open some of them, as
interest and time permits. See also Procesi’s overview [Pro03], which has a
different emphasis.

Remark 3.1. The overarching strategy is roughly as follows:

(1) Identify properties of the bigraded Frobenius series of Dµ which make it
yield q, t-Kostka’s.

(2) Reduce (1) to the study of schemes Xn, Hn, in particular that Xn is
Cohen-Macaulay, or equivalently the n! conjecture.

(3) Reduce (2) to the observation that a certain sequence of global sections
on Xn yield regular sequences locally.

(4) Reduce (3) to showing a certain ideal J in C[x,y] has Jd free over C[y]
for all d. (In fact, Jd =

⋂
1≤i<j≤n(xi − xj , yi − yj)d.)

(5) Reduce (4) to a similar statement for global sections of “polygraphs.”
(6) Very carefully inductively construct bases to verify (5).

(1)-(3) were in [Hai99]. (5) has an important connection to the generalized
McKay correspondence, which we will leave for later lectures. (6) is highly
technical and takes 30 pages in [Hai01]. It is essentially the key contribution
of [Hai01], though it is also perhaps the least appealing part of the overall
argument, and it is logically distinct from the preceding parts. We will
hopefully discuss it further towards the end of the seminar.

We will discuss (1) most extensively today, since the following lectures
will cover (2)-(5), and since we may forget about Macdonald polynomials
after (1) is complete. Nonetheless, we will also introduce some of the key
players in parts (2)-(4) in discussing (1).

3.1. Frobenius Series of Dµ. For convenience, we briefly recall our ear-
lier notation. Fix n and let C[x,y] := C[x1, . . . , xn, y1, . . . , yn]. Let Sn
act diagonally on C[x,y] via σ · xi := xσ(i), σ · yi := yσ(i). If D :=

{(p1, q1), . . . , (pn, qn)} ⊂ N×N, we set ∆D := det(x
pj
i y

qj
i )1≤i,j≤n. We further

set Dµ := C[∂x, ∂y]∆µ, which is a doubly-graded Sn-module. The Frobe-
nius characteristic is the map which sends the irreducible Sn-representation
(Specht module) Sλ to the Schur function sλ(x) = sλ(x1, x2, . . .) ∈ Λ.

Definition 3.2. Let D be a finite dimensional doubly-graded Sn-module.
The Frobenius series of D is

FD(x; q, t) :=
∑
r,s

trqs ch(Dr,s) ∈ Λ[q, t].
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Recall that

H̃µ(x; q, t) =
∑
λ

K̃λµ(q, t)sλ(x) ∈ Λ⊗Z Q(q, t).

Garsia-Haiman’s conjecture [GH96] was that not only is K̃λµ ∈ N[q, t], but

the coefficient on trqs in K̃λµ is the multiplicity of Sλ in (Dµ)r,s. Equivalently,
one must show

(1) H̃µ(x; q, t) = FDµ(x; q, t).

The modified Macdonald polynomials H̃µ have the following characteriza-
tion, which is quite reminiscent of the original characterization above of the
Macdonald polynomials Hµ:

Proposition 3.3 ([Hai01, Prop. 2.1.1]). The H̃µ(x; q, t) satisfy

(a) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− q)] : λ ≥ µ},
(b) H̃µ(x; q, t) ∈ Q(q, t){sλ[X/(1− t)] : λ ≥ µ′}, and

(c) H̃µ[1; q, t] = 1 (= H̃(1, 0, 0, . . . ; q, t)).

These conditions characterize H̃µ uniquely.

Aside 3.4. It is perhaps time to discuss plethystic notation. The idea is that
given a symmetric function f(x1, x2, . . .) and another function g(x1, x2, . . .) =
xα + xβ + · · · (where xα :=

∏
i x

αi
i ), we may consider

f [g] := f(xα, xβ, . . .),

which is well-defined precisely because f is symmetric. This is the plethysm
of f and g. One makes this precise by defining pk[g] for formal Laurent series
g by replacing the indeterminates in g with their kth powers and extending
to all f using the fact that the pk form an algebraic basis for Λ (over Q, say).

In any case, one often writes X := x1 + x2 + · · · , so that f [X] =
f(x1, x2, . . .). More pertinently,

X/(1− q) = (x1 + x2 + · · · )/(1− q)
= (x1 + x1q + x1q

2 + · · · ) + (x2 + x2q + · · · ) + · · ·

and

sλ[X/(1− q)] = sλ(x1, x1q, x1q
2, . . . , x2, x2q, . . .).

One great convenience of this notation is that plethystically substituting
X/(1 − q) is invertible by plethystically substituting X(1 − q). Indeed,
f [−X] = (−1)dωf for degree d elements f ∈ Λ, where ω : sλ 7→ sλ′ . See
[Hai99, §2] for more information. Plethysms arise naturally in the represen-
tation theory of Sn and GLm(C) quite frequently, though they are also most
often extremely difficult to decompose explicitly.
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We first note the q = 0 specialization of (1),

(2) FDµ(x; 0, t) = tn(µ)Pµ[X/(1− t−1); t−1],

where Pµ is a Hall-Littlewood function. Assuming (1), from the triangularity
requirements above (after “inverting” the formula sλ(x) =

∑
µKλµ(q)Pµ(x; q),

which accounts for the plethysm), it must then be that the only irreducible
representations Sλ appearing in the y-degree zero part of Dµ have λ ≥ µ.
This is similar in flavor to condition (a) above.

We first replace Dµ with a quotient:

Definition 3.5. Define an ideal Jµ := {p ∈ C[x,y] : p(∂x, ∂y)∆µ = 0}. Let

Rµ := C[x,y]/Jµ,

which is a doubly-graded Sn-module. (Indeed, Rµ is a further quotient of
the diagonal coinvariants Rn.) Note that Rµ is a doubly-graded Sn-module.

In fact, FDµ = FRµ , so we may replace Dµ with Rµ in (1) and (2). (Dµ

is the first in a long line of friends we will likely never see again.) Moreover,
Rµ/(y) where (y) := (y1, . . . , yn) is the ring from Garsia-Procesi [GP92]
(unfortunately written Rµ above), so (2) is true. We also find that condition
(c) is true for FRµ since condition (c) is equivalent to requiring that the trivial

representation appear uniquely in degree 0, and RSnµ consists only of the
constants. (b) more or less follows from (a) by symmetry, so we concentrate
on amplifying (2) to (a).

3.2. Hn and Xn detour. To connect (2) to condition (a), we must take a
detour through geometry. We will often not give full definitions, there will
be no universal properties, etc. Some of this will appear in later lectures in
more detail.

Definition 3.6. The Hilbert scheme of (“n”) points in the plane Hn :=
Hilb(C2) has closed points given by ideals {I ⊂ C[x, y] : dimCC[x, y]/I = n}.
Reduced closed subschemes of C2 consisting of n distinct points in C2 form
an open, dense subset of Hn; these are intuitively the n-tuples of distinct
points in C2.

A diagram D(µ) ⊂ N × N with n boxes determines a monomial ideal
Iµ ∈ Hn given by Iµ := (xpyq : (p, q) 6∈ D(µ)), and the monomials xpyq for
(p, q) ∈ D(µ) form a C-basis for C[x, y]/Iµ. Note that Iµ vanishes only at
the origin (0, 0), so the corresponding subscheme is “very” non-reduced.

The torus T2 := (C∗)2 acts on C[x, y] by (t, q) · (x, y) := (tx, qy), and
hence on Hn, on closed points by (t, q) · I = I(x/t, y/q). The Iµ are fixed
by T2, and indeed they are the only fixed points, which are hence isolated.
The Iµ are fundamental in the sense that every T2-orbit has some Iµ in its
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closure. The bigraded Hilbert series of Dµ is precisely its T2-character (as a
function of t, q).

Definition 3.7. Ordered n-tuples of points in C2 are (C2)n = SpecC[x,y],
and the obvious Sn-actions coincide. Unordered n-element multisets of points
in C2 are orbits in (C2)n/Sn =: SnC2, arising from SpecC[x,y]Sn . In this
way we have a natural map (C2)n → SnC2 both set- and scheme-theoretically.

For I ∈ Hn, each point of the corresponding closed subscheme can be
counted with multiplicity equal to the length of the stalk at that point, or
of the corresponding artinian local ring factor of C[x, y]/I. We then have a
map σ : Hn → SnC2 which sends an ideal I to the n-element multiset of its
points repeated according to their multiplicities. Indeed, σ is a projective
morphism, called the Chow morphism.

The isospectral Hilbert scheme Xn is the reduced fiber product

Xn (C2)n

Hn SnC2,

f

ρ

σ

that is, the reduced closed subscheme of Hn × (C2)n whose closed points are
n-tuples (I, P1, . . . , Pn) satisfying σ(I) = {P1, . . . , Pn} (as a multiset). In
this sense f and ρ are projection maps. For instance, we have ρ−1(Iµ) =
{(Iµ, 0, . . . , 0) =: Qµ}.

A consequence of the n! conjecture is that the coordinate ring of the
scheme-theoretic fiber ρ−1(Iµ) is in fact Rµ. We now return to condition (a)
above.

Definition 3.8. Let Sµ := OXn,Qµ be the stalk at the fiber of Iµ. There is
a notion of a “formal Hilbert (Frobenius) series” for certain modules with
equivariant T2-actions (commuting T2- and Sn-actions) which coincides with
the usual notions in nice situations. See [Hai99, §5] for details.

Indeed, Haiman showed [Hai99] that given the n! conjecture,

FSµ(x; q, t) = H(q, t)FRµ(x; q, t)

where H(q, t) is the formal Hilbert series of OHn,Iµ . Now, x1, . . . , xn and

y1, . . . , yn can be considered as coordinate functions in (C2)n = SpecC[x,y],
so they give global regular functions (denoted by the same symbols) on Xn

via Xn
f→ (C2)n. Considered in Sµ, they in fact form a regular sequence,

and in this situation Haiman showed

FSµ/(y)(x; q, t) = FSµ [X(1− q); q, t].
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Moreover, he showed that if Sλ has multiplicity zero in Rµ/(y), then the
coefficient of sλ in FSµ/(y)(x; q, t) is zero. Combining these statements and the
triangularity result mentioned above yields (a). Since (b) follows essentially
by symmetry, this completes the proof.

3.3. Further highlights. We briefly mention some of the other key players
in the argument.

Remark 3.9. The schemes Hn and Xn can be constructed as quite explicit
blowups, as follows.

Let A := C[x,y]ε be the space of Sn-alternating elements. The ∆D for
D ⊂ N× N of size n form a C-basis for A. Let Ad be the space spanned by
d-fold products of elements of A, with A0 := C[x,y]Sn .

Hn is isomorphic as a scheme projective over SnC2 to ProjT where T is
the graded C[x,y]Sn-algebra T := ⊕d≥0Ad.

Xn is isomorphic as a scheme over (C2)n to the blowup of (C2)n at the
ideal J := C[x,y]A generated by the alternating polynomials, namely this
is ProjS[tJ ] where S[tJ ] ∼= ⊕d≥0Jd is the Rees algebra, S = C[x,y]. Note:
we have J ⊂ ∩i<j(xi − xj , yi − yj) trivially. A corollary of Haiman’s proof is
that equality in fact holds.

There are also “nested” versions of Hn and Xn which are used in essential
ways inductively.
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103–115, 2003. Séminaire Bourbaki. Vol. 2001/2002.



24 JOSH SWANSON

[Sag91] Bruce E. Sagan. The symmetric group. The Wadsworth & Brooks/Cole Mathe-
matics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific
Grove, CA, 1991. Representations, combinatorial algorithms, and symmetric
functions.

[Sch12] Olivier Schiffmann. Lectures on Hall algebras. In Geometric methods in rep-
resentation theory. II, volume 24 of Sémin. Congr., pages 1–141. Soc. Math.
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