
ON EIGENVALUES OF REPRESENTATIONS OF REFLECTION GROUPS AND

WREATH PRODUCTS

JOSH SWANSON

(This is a two-part lecture series on John Stembridge’s paper of the same name. It was given in the
student-run CAT seminar at the University of Washington on February 11th and 18th, 2016.)

Lecture 1

Outline.

(1) Cyclic exponents, branching rule application
(2) (Co)invariants, degrees, exponents
(3) Fake degree polynomials

Definition 1. Let G be a finite group, V a finite dimensional complex vector space, and G → GL(V ) a
representation. The minimal polynomial of (the image of) g ∈ G divides x|g| − 1 which splits with distinct
roots, so g is diagonalizable.

Say m := |g|, set ωm := exp(2πi/m), and suppose g ∼ diag(ωe1m , . . . , ω
edimV
m ). Define the cyclic exponents

of g as the multiset

Eg,V := {e1, . . . , edimV }.
We will “normalize” so that 0 ≤ ei < m.

(Note: Eg,V only depends on the conjugacy class of g and the representation or its character, so sometimes
we’ll use slightly different notation. Hopefully this will not cause confusion.)

Example 2. Let G = Sn act on V = Cn as permutation matrices. The matrix of (12 · · ·n) is a companion

matrix with minimal polynomial xn − 1 =
∏n−1
i=0 (x− ωin), so

E(12···n),Cn = {0, 1, 2, . . . , n− 1}.

Question 3. What are the cyclic exponents...

(1) ...when G is a reflection group acting naturally on Cn?
(2) ...when V is an irrep of such G?

Motivation 4. Pick g ∈ G and consider 〈g〉 ⊂ G. Let ρ : G → GL(V ). There are m = |g| irreps of 〈g〉,
which are of the form φr : 〈g〉 → GL(C)(= C×) where φr(g) := ωrm. The irreducible decomposition of the
restricted representation is

ρ↓G〈g〉 ∼=
∑

e∈Eg,V

φe.

Hence the cyclic exponents are recording the branching rules from G down to its cyclic subgroups. By
Frobenius Reciprocity, we get rules to induce from 〈g〉 up to G, which can be summarized neatly with the
formal generating function

m−1∑
r=0

qr(φr↑G〈g〉) =
∑

irreps ψ of G

Eg,ψ(q) ψ

where Eg,ψ(q) :=
∑
e∈Eg,ψ q

e.
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Example 5. Restricting the natural representation of Sn on Cn to 〈(12 · · ·n)〉 gives the regular representation
on 〈(12 · · ·n)〉. Inducing the regular representation on 〈(12 · · ·n)〉 up to Sn gives CSn, but now “graded” by
the degree of q.

In order to state the second main application of cyclic exponents, we first give some background on complex
reflection groups and coinvariant algebras.

Definition 6. Let G be a finite group, V a finite dimensional C-vector space, and G → GL(V ) be a
representation. Let S(V ) denote the symmetric algebra of V (which is isomorphic to C[x1, . . . , xdimV ]). S(V )
is naturally a graded G-module, via

g · v1 · · · vk := g(v1) · · · g(vk).

Let S(V )G := {p ∈ S(V ) : g · p = p,∀g ∈ G} be the G-invariants of S(V ). A reflection is an element
T ∈ GL(V ) of finite order whose fixed point set is a hyperplane.

Theorem 7 (Chevalley-Shephard-Todd). Suppose G→ GL(V ) is faithful. The following are equivalent:

(a) S(V )G is a (free) polynomial algebra.
(b) G is generated by reflections. (We call such G a complex reflection group.)

Example 8. Let Sn act on Cn naturally. Then S(V ) = C[x1, . . . , xn] and S(V )G is the symmetric polynomials
on x1, . . . , xn. This is freely generated by, say, h1 . . . , hn, so Sn must be generated by reflections.

Definition 9. Let G be a complex reflection group in V = Cn. As it turns out, the multiset of degrees
{d1, . . . , dn} of any homogeneous algebraically independent generating set of S(V )G is uniquely determined.
They are called the degrees of G.

If G is a finite Coxeter group, a Coxeter element c is a product of all simple reflections taken in any order.
The exponents of G are Ec,Cn . All Coxeter elements are conjugate, so this is well-defined.

Remark 10. In fact, |G| = d1 · · · dn. More generally, the Poincare polynomial of the coinvariant algebra of
G is the product of the q-analogues of the degrees.

Theorem 11 (Coxeter). Let G be a finite Coxeter group. Indeed, G is a complex reflection group acting on
some Cn. Let c ∈ G be a Coxeter element (i.e. a product of all simple reflections taken in any order). Then

the degrees of G = 1 + the exponents of G

Remark 12. Springer generalized the preceding theorem to regular elements of G. Precisely, if g ∈ G
contains an eigenvector which is not contained in any hyperplane fixed by the reflections of G with eigenvalue
ω, it is called ω-regular. He showed that if g ∈ G is ωrn-regular, then

r · (1− the degrees of G) = Eg,Cn (mod n).

As it happens, Coxeter elements are ω−1n -regular.

Example 13. For G = Sn acting on Cn, the degrees are {1, 2, . . . , n}, and we computed E(12···n),Cn =
{0, 1, . . . , n− 1}. Consequently, |Sn| = n!.

Definition 14. With G as above, the coinvariant algebra of G is

S(V )G := S(V )/S(V )G+

where S(V )G+ denotes ideal generated by invariants without constant term. It is naturally a graded G-module.

Theorem 15 (Chevalley). If G is a complex reflection group, S(V )G is isomorphic as a G-module to the
regular representation of G.

For instance, dimS(V )G = |G| is finite. We think of S(V )G as a “graded regular representation.”
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Notation 16. Given a (finite) set X and a function stat : X → Z, write

Xstat(q) :=
∑
x∈X

qstat x.

Extend this notation to stat : X → Zn in the obvious way, or to multiple statistics. If stat : X ↪→ Z is the
inclusion of a subset, we omit it from the notation. We sometimes allow the codomain to be a set other than
Z.

Definition 17. Let G be a complex reflection group acting naturally on Cn. Let ψ be an irrep of G. The
corresponding fake degree polynomial is

Gψ(q) := {irreps in S(V )G iso. to ψ}deg(q)

(:=

N∑
i=0

(multiplicity of ψ in ith homog. comp. of S(V )G)qi)

Example 18. Gψ(1) = dimψ.

Motivation 19. The fake degree polynomials are in fact generating functions for cyclic exponents. Precisely:

Theorem 20 (Springer). Let G be a finite reflection group and let g ∈ G have order m. If g is ωsm-regular,
then for any irrep ψ of G,

Gψ(qs) = Eg,ψ(q) (mod qm − 1).

Example 21. At q = 1, this says dimψ = dimψ.

Let G := Sn, g := (12 · · ·n), and let ψ := sgn: g 7→ sgn(g) ∈ C× be the sign representation. Here
c ∼ diag(sgn(s1 · · · sn−1) = (−1)n−1). Hence

E(12···n),sgn(q) =

{
q0 n odd

qn/2 n even.

On the other hand, one-dimensional representations occur uniquely in CG, and Sn has just two since
its abelianization is C2. In S(Cn)Sn , the degree 0 component carries the trivial representation, and the
top-degree component is spanned by the “staircase monomial” xn−11 · · ·xn−nn which must then carry the sign
representation. Hence

Gsgn(q−1) = q−(n2) ≡

{
q0 n odd

qn/2 n even
(mod qn − 1).

Note to self : Ended here, about an hour in, going at a reasonable pace. Depending on audience, may need
to add a review of the representation theory of Sn or remove the background material on coinvariant algebras
(though note the use of V instead of V ∗ for the symmetric algebra).

Lecture 2

Outline.

(1) Summary of last time
(2) Fake degree polynomials and maj
(3) Cyclic exponents for Sn
(4) Wreath products, G o Sn-rep theory
(5) Cyclic exponents for Ca o Sb

Summary. Let G be a finite group, V a finite dimensional complex vector space, G→ GL(V ) a representation.
The cyclic exponents of (g, V ) are the multiset Eg,V of exponents of eigenvalues of g relative to, say,
ω|g| := exp(2πi/|g|). We saw them appearing in several contexts:

(i) Branching rules inducing between G and 〈g〉 (completely general)
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(ii) For regular elements in reflection groups (e.g. Coxeter elements) acting naturally on Cn, they’re the
degrees (up to an affine transformation, mod n).

(iii) For regular elements in reflection groups acting via an irrep, they track which irreps occur in which
homogeneous components of the coinvariant algebra:

Gψ(qs) = Eg,ψ(q) (mod qm − 1)

where Gψ(q) := {irreps in S(V )G iso. to ψ}deg(q), Eg,ψ(q) :=
∑
e∈Eg,ψ q

e, S(V )G := S(V )/S(V )G+.

(iv) To illustrate these points, we considered Sn acting naturally on Cn with regular (Coxeter) element
(12 · · ·n). For (ii), we computed the degrees of this action as {1, 2, . . . , n} (since C[x1, . . . , xn]Sn =
C[h1, . . . , hn]), and we computed E(12···n),Cn = {0, 1, . . . , n− 1} directly from the permutation matrix.

For (iii), the sgn representation appears uniquely in the
(
n
2

)
-degree component of S(Cn)Sn , so

Gsgn(q−1) = q−(n2) ≡

{
q0 n odd

qn/2 n even
(mod qn − 1).

Alternatively, we noted that under the sign representation, (12 · · ·n) ∼ diag((−1)n−1), so

E(12···n),sgn(q) =

{
q0 n odd

qn/2 n even.

Remark 22. Today, we’ll fully describe Gψ(q) and Eg,ψ(q) for G = Sn in terms of maj on SYT (g need not
be regular). We’ll motivate this with a result of Lusztig, Stanley and deduce a result of Kraskiewicz-Weyman
as a sample corollary. We’ll then give an analogous result for “most” complex reflection groups, which will
require summarizing the irreps of certain wreath products.

Definition 23. Let λ ` n denote a partition of n. We will use (SSYT) SYT to denote (semi)standard Young
tableaux of a given shape or size. The descent set of T ∈ SYT(n) is the subset of [n− 1] consisting of all i
for which the box labeled i+ 1 appears strictly below the box labeled i (in English notation). The major
index majT is the sum of the descents of T .

Theorem 24 (Lusztig, Stanley). Let Sn act naturally on Cn. Then

{irreps ψ in S(Cn)Sn}deg,type(q, t) = SYT(n)maj,shape(q, t),

where deg refers to the degree of the homogeneous component containing ψ and type(Sλ) := λ.

Remark 25. The LHS is by definition the formal sum
∑
λ`nGSλ(q)tλ. Evaluating the parameters at 1, the

LHS gives #{irreps in CSn} =
∑
λ`n f

λ and the RHS gives # SYT(n), which agree.

Example 26. We have type(sgn) = (1n). Now SYT((1n)) has one element with descent set {1, 2, . . . , n− 1}
and major index

(
n
2

)
. Correspondingly, sgn appears precisely once in the coinvariant algebra, namely in

degree
(
n
2

)
, as we computed last week.

As a sample corollary, we have the following pretty branching rule:

Theorem 27 (Kraskiewicz-Weyman). Let χr : Cn → GL(C) = C× by χr(1) := ωrn. Then

χr↑SnCn =
∑

λ∈SYT(n)

#{T ∈ SYT(λ) : maj(T ) ≡n r}Sλ

where Cn := 〈(12 · · ·n)〉 ⊂ Sn. Moreover, the multiplicities depend only on gcd(n, r).

Proof. The formula is equivalent to

n−1∑
r=0

qr(χr↑SnCn)type(t) ≡ SYT(n)maj,shape(q, t) (mod qn − 1).

From last time, the left-hand side is ∑
λ∈SYT(n)

E(12···n),ψ(q)tλ.
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From Springer’s theorem, E(12···n),ψ(q) ≡ GSλ(q−1) (mod qn − 1), so the left-hand side is

{irreps ψ in S(Cn)Sn}deg,type(q−1, t).
Now apply the Lusztig, Stanley result, which gives the required formula up to replacing q with q−1 on the
right.

For the “moreover,” consider the permutation matrix of (12 · · ·n). It has an eigenvector (1, ωsn, ω
2s
n , . . .)

for each 1 ≤ s ≤ n with eigenvalue ωn. It’s easy to see that this eigenvector is fixed by no transposition
xi ↔ xj if and only if gcd(s, n) = 1. Hence (12 · · ·n) is ωsn-regular precisely when gcd(s, n) = 1. Now we may
apply Springer’s theorem with s in place of −1 above, which replaces −r with rs. The result now follows
from elementary number theory. �

In light of these results, we may expect the cyclic exponents for g ∈ Sn acting on Sλ to be a generating
function on tableau related to the major index in general. In fact:

Definition 28. Fix a partition µ ` n. Set m := lcm(µ1, µ2, . . .). Define majµ : SYT(n)→ Z/m as follows.

Given T ∈ SYT(n), let Dj ∈ SYT(µ1 + · · ·+ µj) consist of those entries of T from 1 to µ1 + · · ·+ µj . Let
Tj be the standard skew tableaux corresponding to Dj/Dj−1 where the entries have been renumbered from 1
to µj . Define

majµ(T ) :=
∑
j

m

µj
majTj (mod m).

Note that whether or not there is a descent in T at µ1, µ1 + µ2, . . . does not matter mod m.

Theorem 29 (Stembridge; conjectured by Stanley). Let Eµ,Sλ be the multiset of cyclic exponents of any

permutation in Sn of cycle type µ and order m acting on the irrep Sλ. Then

Eµ,Sλ(q) = SYT(λ)majµ(q) (mod qm − 1)

Example 30. Let µ = (n), λ = (1n). Then majµ ≡n maj, so we find E(12···n),sgn = {
(
n
2

)
(mod n)} as before.

Evaluating this expression at q = ωm gives the character χλµ of Sλ at µ, an integer. Hence the right-
hand side as an element of Q(ωm) is fixed by the Galois action. This says... something, though not that
#{T ∈ SYT(λ) : majµ T ≡m r} depends only on gcd(r,m). (Hard?) Exercise: determine for which µ this is
true.

We now switch gears and describe the complex reflection groups and their irreps.

Definition 31. Let N,H be groups and let X be a set with an H-action. Consequently, H acts on
∏
x∈X N

by permuting terms (h · (nx)x∈X := (nh−1·x)x∈X). A group acting on another group is precisely a semi-direct
product (decomposition), so we may define the wreath product of N and H as

N oH :=

(∏
x∈X

N

)
oH.

(The X-action is often left implicit.)

Example 32. For our purposes, we’ll use H ≤ Sn, X = [n] with the natural H-action. For instance, N o Sn
can be thought of as the “pseudo-permutation matrices” whose non-zero entries are taken from N . Even
more concretely, we may realize Ca o Sb as a subgroup of Sab: these are the permutations in Sab which first
cyclically permute the size-a blocks (independently) and then permute the b size-a blocks amongst themselves.

For instance, C2 oS2
∼= 〈(12), (34), (13)(24)〉 ∼= D8 is a Sylow-2 subgroup of S4. Indeed, the Sylow subgroups

of symmetric groups are generally direct products of iterated wreath products of cyclic groups.

The following theorem motivates our interest in such wreath products:

Theorem 33 (Shephard-Todd). The complete list of irreducible finite complex reflection groups is as follows:
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(i) Groups of the form Ca o Sb;
(ii) Groups of finite index d | a in Ca o Sb, namely where Cba is replaced by the subgroup of elements which

sum to 0 mod d.
(iii) 34 exceptions, the largest of which is E8, of order 696729600 = 214 · 35 · 52 · 7.

Example 34. Type An−1 is C1 o Sn; type Bn or Cn is C2 o Sn; type Dn is the index d = 2 subgroup of
C2 o Sn. Where are the dihedral groups?

Question 35. Let CG denote the set of conjugacy classes of G, so CSn
∼= {λ ` n}, which in general are

equinumerous with the inequivalent irreps of G. What are the conjugacy classes of G o Sn?

Proposition 36. The conjugacy classes of G o Sn are naturally indexed by partition-valued functions on the
conjugacy classes of G, namely

CGoSn
∼= {µ : CG → {partitions} :

∑
c∈CG

|µ(c)| = n}.

Proof. We define the map; bijectivity is left as an exercise. View G o Sn in terms of “pseudo” permutation
matrices. Pick g ∈ G o Sn and let (i1 · · · ik) be a cycle in the underlying permutation with corresponding
entries g1, . . . , gk ∈ G. Call the conjugacy class of gk · · · g1 the G-class of the cycle (i1 · · · ik) in G. This is
well-defined under cyclic rotations. Now define µ(c) to be the partition formed from the lengths of the cycles
of g whose G-class is c.

(“Naturally” here just means we made no choices aside from viewing GoSn concretely as pseudo-permutation
matrices.) �

Example 37. For Ca o Sb, we may take the conjugacy classes of Ca to be [a], so the conjugacy classes of
Ca o Sb can be thought of as partition-valued functions on [a] (or length a sequences of partitions) whose sizes
add up to b. At a = 1, this reduces to tracking cycle types.

Question 38. Given a complete list of irreps for G and Sn, can we construct such a list for G o Sn? We have
one more or less obvious construction.

(In the following, we mean CG-module when we say G-module. The constructions work over arbitrary
commutative rings, though the representation theory can differ drastically.)

Definition 39. Let U be a G-module, V an Sn-module. Define the wreath product U o V as the following
G o Sn-module. As a C-vector space, it is U⊗n ⊗ V . We define the G o Sn = Gn o Sn-action on each factor as
follows. For (g1, . . . , gn) ∈ Gn, define

(g1, . . . , gn) · (u1 ⊗ · · · ⊗ un ⊗ v) := (g1 · u1)⊗ · · · ⊗ (gn ⊗ un)⊗ v.

If w ∈ Sn, define

w · (u1 ⊗ · · · ⊗ un ⊗ v) := uw−1(1) ⊗ · · · ⊗ uw−1(n) ⊗ (w · v).

Example 40. It is easy to see that if U and V are irreducible, then U o V is irreducible. In general,
dimU o V = (dimU)n(dimV ).

However, there are typically far more conjugacy classes in G o Sn than these pairs can account for. In
Ca o S2, they give 2a representations, all one-dimensional, whereas |Ca o S2| = 2a2.

As another example, the wreath product of the regular representations of G and Sn is the regular
representation of G o Sn.

The following is a more refined but still generic way to create G o Sn-modules:

Definition 41. Let α |= n denote a (weak) composition of n. Write Sα ≤ Sn for the Young subgroup of
Sn where the first α1 elements of [n] are permuted amongst themselves, the next α2 are permuted amongst
themselves, etc. Note that Sα ∼=

∏
i Sαi .
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Let U1, . . . , Ut be G-modules, let α ` n have t parts, and suppose Vi is an Sαi-module for each i ∈ [t].
Now Ui o Sαi is a G o Sαi-module. Taking the tensor product of these yields a

∏
i(G o Sαi)-module, which

naturally restricts to a G o Sα-module. We may then induce this to a G o Sn-module:

(U1 o V1)⊗ · · · ⊗ (Ut o Vt)↑GoSnGoSα .

Example 42. The dimension of the tensor product is
∏t
i=1(dimUi)

αi(dimVi), and inducing multiplies this
further by |G o Sn|/|G o Sα| = n!/

∏
i αi.

In Ca o S2, take t = a, let the Ui range over the irreps of Ca, and let Vi range over the irreps of Sαi . If
α = (0, . . . , 0, 2, 0, . . . , 0), we get the previous 2a one-dimensional irreps. If α = (1, 1, 0, . . .), we must have
V1 = V2 = trivial, giving a representation of dimension 1 · (2!)/(1·) = 2. There are

(
a
2

)
such representations,

so we have (probably) accounted for

2a+ 22 ·
(
a

2

)
= 2a2

dimensions of C(Ca o S2).

The content of the next theorem is essentially that this construction works in general.

Theorem 43 (Specht). Let G be a finite group, and suppose U1, . . . , Ut is a complete list of inequivalent
irreps for G. A complete list of inequivalent irreps for G o Sn arises from considering all α |= t, all choices of
inequivalent irreps Vi for Sαi , and forming all G o Sn-modules

(U1 o V1)⊗ · · · ⊗ (Ut o Vt)↑GoSnGoSα .

Remark 44. Having indexed the Ui by CG, Specht’s theorem lets us index the irreps of G o Sn naturally
with the µ above. We are now nearly in a position to generalize Stembridge’s theorem to Ca o Sb.

First, a little notation. Given µ ∈ CCaoSb , we may think of µ as any skew diagram where the µ(i) have
been arranged so that their rows and columns are disjoint. Then SYT(µ) means the standard tableaux on
any such skew diagram. Finally, write

r(µ) :=

a−1∑
i=0

i|µ(i)|

(where µ(0) = µ(a)).

Theorem 45 (Stembridge). Let x ∈ Ca o Sb be an n-cycle of Ca-class 1. Then

Ex,µ = {r(µ) + a ·majT (mod ab)}T∈SYT(µ).

Example 46. Show that # SYT(µ) is indeed the dimension of the irrep of type µ.

Remark 47. What else is in the paper? (We’re around halfway through, though we’ve skipped things.)

• Generalization of the last theorem to arbitrary x, Ca replaced by arbitrary G, type Dn

• Fake degrees for Ca o Sb, Dn

• A Murnaghan-Nakayama rule for G o Sn
• A description of “difference characters” of Dn
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