SYMMETRIC GROUP CHARACTERS AS SYMMETRIC FUNCTIONS

JOSH SWANSON

(This is a two-part lecture series on Rosa Orellana and Mike Zabrocki's preprint arXiv: 1605.06672 of the same name. It was given in the student-run CAT seminar at the University of Washington on October 6th and 13th, 2016.)

Lecture 1

Summary. Main things:

- New non-homogeneous bases $\{\tilde{s}_{\lambda}\}\$ and $\{\tilde{h}_{\lambda}\}\$ of SYM.
- "Evaluations" at diagonalized permutation matrices of these give symmetric group characters.
- Structure constants of \widetilde{s}_{λ} are stable Kronecker coefficients
- Structure constants of \tilde{h}_{λ} are also pretty nice
- They have many transition coefficients, e.g. $h_{\lambda} \to h_{\mu}$.
- They're implemented in Sage.

Outline.

- (1) Some Schur-Weyl duality
- (2) Evaluations $f[\Xi_{\mu}]$
- (3) Computing $h_{\lambda}[\Xi_{\mu}]$
- (4) Defining $h_{\lambda}, \tilde{s}_{\lambda}$

Definition 1. Let V be a polynomial $\operatorname{GL}(\mathbb{C}^m)$ -module. The Schur character of V is the function

$$\operatorname{ch} V \colon \left\{ \begin{pmatrix} x_1 & & \\ & \ddots & \\ & & x_m \end{pmatrix} : x_i \in \mathbb{C}^{\times} \right\} \to \mathbb{C}$$

given by

$$D \mapsto \operatorname{Tr}(- \mapsto D \cdot -).$$

It turns out that $\operatorname{ch} V \in \mathbb{C}[x_1, \ldots, x_m]$. Furthermore, the irreducible polynomial representations of $\operatorname{GL}(\mathbb{C}^m)$ are well-known modules V^{λ} where λ is a partition with at most m rows (unbounded number of boxes), and

$$\operatorname{ch} V^{\lambda} = s_{\lambda}(x_1, \dots, x_m)$$

(See Fulton's Young Tableaux, Chapter 8.) That is, evaluations of Schur functions are characters of $GL(\mathbb{C}^m)$ modules at diagonal matrices.

Definition 2. Recall that if V_1, V_2 are $GL(\mathbb{C}^m)$ -representations, then $V_1 \otimes_{\mathbb{C}} V_2$ is a $GL(\mathbb{C}^m)$ -representation with action

$$M \cdot (v_1 \otimes v_2) := (M \cdot v_1) \otimes (M \cdot v_2).$$

Indeed,

$$\operatorname{ch}(V_1 \otimes V_2) = (\operatorname{ch} V_1)(\operatorname{ch} V_2)$$

Date: October 19, 2016.

Hence the Schur polynomial structure constants $c_{\mu\nu}^{\lambda}$ defined by

$$s_{\mu}s_{\nu} = \sum_{\lambda} c_{\mu\nu}^{\lambda}s_{\lambda}$$

can be interpreted as saying

$$c_{\mu\nu}^{\lambda} = \{ \text{multiplicity of } V^{\lambda} \text{ in } V^{\mu} \otimes V^{\nu} \}.$$

Question 3. Our motivation is the following: what if we evaluate $f \in \mathbb{C}[x_1, \ldots, x_m]$ at just diagonalizations of permutation matrices? Can we do this for $f \in SYM$, say for our usual bases?

Notation 4. Let Ξ_k denote the (multi)set of eigenvalues of the permutation matrix of a k-cycle, written

$$\Xi_k := 1, e^{2\pi i/k}, e^{2 \cdot 2\pi i/k}, \dots, e^{(k-1)2\pi i/k},$$

Let Ξ_{μ} denote the multiset of eigenvalues of the matrix of a permutation of cycle type μ ,

$$\Xi_{\mu} := \Xi_{\mu_1}, \Xi_{\mu_2}, \dots$$

Definition 5. Fix a partition μ . Define a map SYM $\rightarrow \mathbb{C}$ by

$$p_k \mapsto (x_1^k + \dots + x_{|\mu|}^k)(\Xi_{\mu}),$$

extended algebraically. Denote this as

$$f \mapsto f[\Xi_{\mu}].$$

Intuitively, we imagine plugging in $\Xi_{\mu}, 0, 0, \ldots$ to a symmetric function.

Question 6. What is $h_{\lambda}[\Xi_{\mu}]$?

To answer the question, we first introduce a slew of notation.

Notation 7.

- We write multisets as {{b₁, b₂,..., b_r}}, or as {{1^{a₁}, 2^{a₂},..., ℓ^{a_ℓ}}}.
 A set partition of a set S is a set of subsets {S₁,..., S_ℓ} such that Ø ≠ S_i ⊂ S, S_i ∩ S_j for all i ≠ j, and $S_1 \cup \cdots \cup S_\ell = S$.
- By contrast, a multiset partition of a multiset S is a multiset $\pi = \{\{S_1, \ldots, S_\ell\}\}$ such that $\emptyset \neq S_i \subset S$ and $S_1 \cup \cdots \cup S_{\ell} = S$, both in the multiset sense. We write $\pi \Vdash S$.
- Write $\widetilde{m}(\pi)$ to denote the partition obtained from the list of multiplicities of the multiset π . For example,

$$\widetilde{m}(\{\{\{1,1,2\}\},\{\{1,1,2\}\},\{\{1,3\}\}\}\}) = (2,1).$$

We also need some symmetric function identities. Recall that

$$p_{\mu} = \sum_{\lambda} \chi^{\lambda}(\mu) s_{\lambda}$$

where $\chi^{\lambda}(\mu)$ is the character of the Specht module indexed by λ at a permutation of cycle type μ . Consequently,

$$\langle s_{\lambda}, p_{\mu} \rangle = \chi^{\lambda}(\mu)$$

(where we've used the Hall Inner Product, which can be defined by $\langle s_{\lambda}, s_{\mu} \rangle := \delta_{\lambda=\mu}$). Similarly,

$$\langle h_{\lambda}, p_{\mu} \rangle = (\operatorname{ch} 1 \uparrow_{S_{\lambda}}^{S_{n}})(\mu)$$

where $\lambda, \mu \vdash n, S_{\lambda} := S_{\lambda_1} \times S_{\lambda_2} \times \cdots$ is a Young subgroup, and ch denotes the usual character of a representation.

With all this notation, we can write out a nice answer to the above question:

Theorem 8 (Theorem 2 in O-Z). For partitions λ, μ (not necessarily of the same size), write

$$H_{\lambda\mu} := \langle h_{|\mu|-|\lambda|} h_{\lambda}, p_{\mu} \rangle$$

(This is 0 if $|\lambda| > |\mu|$.) Then

$$h_{\lambda}[\Xi_{\mu}] = \sum_{\pi \vdash \{\{1^{\lambda_1}, \dots, \ell^{\lambda_\ell}\}\}} H_{\widetilde{m}(\pi), \mu}.$$

The theorem motivates the following recursive definition:

Definition 9. Let \tilde{h}_{μ} be the family of symmetric functions defined by

$$h_{\lambda} = \sum_{\pi \Vdash \{\{1^{\lambda_1}, \dots, \ell^{\lambda_\ell}\}\}} \widetilde{h}_{\widetilde{m}(\pi)}$$

Example 10. At $\lambda = (2)$, we consider multiset partitions $\pi \Vdash \{\{1^2\}\}$, of which there are $\pi = \{\{\{\{1\}\}, \{\{1\}\}\}\}, \{\{1\}\}\}\}$

and which have $\widetilde{m}(\pi) = (2), (1)$, respectively. Hence

$$h_{(2)} = \tilde{h}_{(2)} + \tilde{h}_{(1)}$$

Similarly we find $h_{(1)}=\widetilde{h}_{(1)},$ so that we are forced to use

$$h_{(2)} = h_{(2)} - h_{(1)}$$

Corollary 11. $\{\tilde{h}_{\mu}\}$ is a well-defined basis of SYM, where in fact

$$\widetilde{h}_{\lambda}[\Xi_{\mu}] = H_{\lambda\mu} = (\operatorname{ch} 1\uparrow_{S_{(|\mu|-|\lambda|,\lambda)}}^{S_{|\mu|}})(\mu)$$

(where the last equality requires $|\mu| \ge |\lambda|$).

The basis $\{\tilde{h}_{\mu}\}$ is thus called the **induced trivial character basis**. Note that infinitely many of the evaluations of \tilde{h}_{λ} are all specified simultaneously as μ varies over all partitions.

We can do the same thing but with S^λ instead of $1\!\!\uparrow^{S_n}_{S_\lambda}.$ Formally,

Definition 12. Choose $n \ge 2|\mu|$ and require

$$\widetilde{h}_{\mu} = \sum_{\lambda:|\lambda| \le |\mu|} K_{(n-|\lambda|,\lambda),(n-|\mu|,\mu)} \widetilde{s}_{\lambda}.$$

One may check the coefficients are independent of n and that this linear system can be inverted.

Corollary 13. $\{\tilde{s}_{\mu}\}$ is a well-defined basis of SYM, where in fact

$$\widetilde{s}_{\lambda}[\Xi_{\nu}] = \langle s_{(n-|\lambda|,\lambda)}, p_{\nu} \rangle = \chi^{(n-|\lambda|,\lambda)}(\nu)$$

where $\nu \vdash n$, and the last equality requires $n \geq |\lambda| + \lambda_1$.

The basis $\{\tilde{s}_{\mu}\}$ is thus called the **irreducible character basis**.

Lecture 2

Outline.

- (1) Recap
- (2) Stable Kronecker coefficients
- (3) $\{\tilde{s}_{\lambda}\}; \{\tilde{h}_{\lambda}\}$ structure constants
- (4) A uniqueness theorem
- (5) An curious observation

Remark 14. To summarize last lecture, we found:

- Two inhomogeneous bases $\{\tilde{h}_{\lambda}\}, \{\tilde{s}_{\lambda}\}$ of SYM. Top-degree pieces are h_{λ}, s_{λ} .
- Evaluations $f[\Xi_{\mu}]$ defined by

$$p_k[\Xi_\mu] := (x_1^k + \dots + x_{|\mu|}^k)(\Xi_\mu)$$

- where Ξ_{μ} is the multiset of eigenvalues of a permutation matrix of cycle type μ .
- Nice properties:

$$\widetilde{h}_{\lambda}[\Xi_{\mu}] = H_{\lambda\mu} = \langle h_{|\mu|-|\lambda|} h_{\lambda}, p_{\mu} \rangle = (\operatorname{ch} \operatorname{l\uparrow}_{S_{|\mu|-|\lambda|,\lambda}}^{S_{|\mu|}})$$

and

$$\widetilde{s}_{\lambda}[\Xi_{\mu}] = \langle s_{|\mu| - |\lambda|, \lambda}, p_{\nu} \rangle = \chi^{|\mu| - |\lambda|, \lambda}(\mu).$$

(Technical note: if the Schur function's index is not a partition, we define it formally by the Jacobi-Trudi formula; see equation (9) in Orellana-Zabrocki. Likewise the irreducible character is only valid at partition shapes.)

Question: what are the structure constants for $\{\tilde{h}_{\lambda}\}$ and $\{\tilde{s}_{\lambda}\}$?

Definition 15. The tensor product of S_n -representations U, V is the S_n -module $U \otimes_{\mathbb{C}} V$ given by

 $\sigma \cdot (u \otimes v) := (\sigma \cdot u) \otimes (\sigma \cdot v).$

We have some constants $g_{\mu,\nu,\lambda} \in \mathbb{Z}_{\geq 0}$ such that

$$S^{\mu}\otimes S^{
u}=\oplus_{\lambda}g_{\mu,
u,\lambda}S^{\lambda},$$

which are zero if λ, μ, ν are not all of the same size.

Cute fact: $g_{\mu,\nu,\lambda}$ is independent of the order of the indexes.

Definition 16. The Kronecker product is the bilinear map on SYM given by

$$s_{\mu} * s_{\nu} := \sum_{\lambda} g_{\mu,\nu,\lambda} s_{\lambda}.$$

Hence the Kronecker product of symmetric functions is the tensor product of the underlying S_n -representations.

Recall that under the Schur character, the tensor product of $\operatorname{GL}(\mathbb{C}^m)$ -representations corresponds to the product of symmetric polynomials. Under the Frobenius character, the tensor product of S_n -representations corresponds to the Kronecker product of symmetric polynomials.

Theorem 17 (Murnaghan). $g_{N\oplus\mu,N\oplus\nu,N\oplus\lambda}$ converges as $N \to \infty$ (indeed, monotonically)!

Definition 18. The stable or reduced Kronecker coefficients $\tilde{g}_{\lambda\mu}^{\gamma}$ are defined by

$$s_{(n-|\lambda|,\lambda)} * s_{(n-|\mu|,\mu)} = \sum_{\gamma} \widetilde{g}_{\lambda\mu}^{\gamma} s_{n-|\gamma|,\gamma}$$

and similarly we define $\tilde{d}^{\gamma}_{\lambda\mu}$ by

$$h_{(n-|\lambda|,\lambda)} * h_{(n-|\mu|,\mu)} = \sum_{\gamma} \widetilde{g}_{\lambda\mu}^{\gamma} h_{n-|\gamma|,\gamma}$$

for $n \gg 0$.

Remark 19. Interestingly, $\tilde{g}^{\gamma}_{\lambda\mu} = c^{\gamma}_{\lambda\mu}$ when $|\lambda| + |\mu| = |\gamma|$. For a nice summary of stable Kronecker coefficients, see Briand-Orellana-Rosas, "The stability of the Kronecker product of Schur functions."

Theorem 20 (Theorem 4 in Orellana-Zabrocki). We have

$$\widetilde{s}_{\lambda}\widetilde{s}_{\mu} = \sum_{|\nu| \le |\lambda| + |\mu|} \widetilde{g}_{\lambda\mu}^{\nu}\widetilde{s}_{\nu}$$

and

$$\widetilde{h}_{\lambda}\widetilde{h}_{\mu} = \sum_{|\nu| \le |\lambda| + |\mu|} \widetilde{d}_{\lambda\mu}^{\nu}\widetilde{h}_{\nu}.$$

Remark 21. Orellana-Zabrocki also give descriptions for:

- a new d^ν_{λμ} interpretation in terms of multiset partition shuffles
 transition coefficients h_λ → h̃_μ, s̃_λ → h̃_μ, h̃_λ → s̃_μ, h_λ → s̃_μ, e_λ → s̃_μ, h̃_λ → p_μ, s̃_λ → p_μ, p_λ → s̃_μ.

I'd like to end with an approach to one of Orellana-Zabrocki's results, which potentially suggests consideration of a multivariate generalization of the evaluations $f[\Xi_{\mu}]$.

Proposition 22 (Proposition 54 in Orellana-Zabrocki). Let $f, g \in SYM$ with deg $f, deg g \leq n$. Suppose

$$f[\Xi_{\mu}] = g[\Xi_{\mu}]$$

for all μ with $|\mu| \leq n$. Then f = g.

Proof. (Unfinished; see O-Z for a complete, but different proof.) We need to show that if

$$\sum_{\lambda:|\lambda| \le n} c_{\lambda} p_{\lambda}[\Xi_{\mu}] = 0$$

for all μ where $|\mu| \leq n$, then $c_{\lambda} = 0$ for all λ where $|\lambda| \leq n$. That is, we need the coefficient matrix $(p_{\lambda}[\Xi_{\mu}])$ to be nonsingular.

One can check that

$$p_{\lambda}[\Xi_{\mu}] = \prod_{j} \sum_{i:\mu_{i}|\lambda_{j}} \mu_{i}.$$

For instance, $p_{(2,1)}[\Xi_2] = (1^2 + (-1)^2)(1 + (-1)) = 0$, and the j = 2 factor is an empty sum which is also 0.

After playing around with a few examples, the determinant of this matrix tends to have quite a few factors. Playing around a bit more, let M_0, M_1, \ldots and X_1, X_2, \ldots be formal parameters and consider the power series

$$P_{\lambda\mu} := \prod_{j} \sum_{i=1}^{\infty} M_{m(\mu,i,\lambda_j)} X_i$$

where

$$m(\mu, i, a) := \begin{cases} \# \text{ copies of } i \text{ in } \mu & \text{if } i \mid a \\ 0 & \text{otherwise.} \end{cases}$$
$$= \#\{j \in \mu : j = i \mid a\}.$$

(Here partitions have been stripped of zero parts.) For instance,

$$P_{(2,1),(2)} = (M_0 X_1 + M_1 X_2 + M_0 X_3 + M_0 X_4 + M_0 \cdots)(M_0 X_1 + M_0 X_2 + M_0 \cdots).$$

Specializing $M_i \mapsto i, X_i \mapsto i, P_{\lambda\mu}$ becomes $p_{\lambda}[\Xi_{\mu}]$.

For fixed n, let

$$D_n := \det(P_{\lambda\mu})_{\lambda,\mu:|\lambda|,|\mu| \le n}.$$

Further, write

$$V(M,n) := \prod_{0 \le i < j \le n} (M_j - M_i).$$

By brute force, we have:

$$D_{0} = 1$$

$$D_{1} = V(M, 1)x_{1}$$

$$D_{2} = V(M, 2)V(M, 1)x_{1}^{3}x_{2}$$

$$D_{3} = V(M, 3)V(M, 1)^{4}x_{1}^{7}x_{2}^{2}x_{3}$$

$$D_{4} = V(M, 4)V(M, 2)^{2}V(M, 1)^{6}x_{1}^{14}x_{2}^{5}x_{3}^{2}x_{4}$$

$$D_{5} = V(M, 5)V(M, 3)V(M, 2)^{3}V(M, 1)^{12}x_{1}^{26}x_{2}^{9}x_{3}^{4}x_{4}^{2}x_{5}.$$

Note that X_i for i > n have canceled from D_n .

Hence, we're lead to conjecture that

$$D_n = \prod_{i=1}^n V(M,i)^{\alpha_i} x_i^{\beta_i}$$

where $\alpha = (\alpha_1, \ldots, \alpha_n)$ is a weak composition (probably with $\alpha_n = 1$) and $\beta = (\beta_1, \ldots, \beta_n)$ is a partition (probably with $\beta_n = 1$). The first few α, β :

n	α	β
0	()	()
1	(1)	(1)
2	(1,1)	(3,1)
3	(4, 0, 1)	(7, 2, 1)
4	(6, 2, 0, 1)	(14, 5, 2, 1)
5	(12, 3, 1, 0, 1)	(26, 9, 4, 2, 1)

Of course, the conjecture explains the factorization of the original coefficient matrix to a large degree and shows it to be nonsingular. $\hfill \Box$