SYMMETRIC GROUP CHARACTERS AS SYMMETRIC FUNCTIONS

JOSH SWANSON

(This is a two-part lecture series on Rosa Orellana and Mike Zabrocki’s preprint arXiv: 1605.06672 of the
same name. [t was given in the student-run CAT seminar at the University of Washington on October 6th
and 13th, 2016.)

LECTURE 1

Summary. Main things:

New non-homogeneous bases {5} and {hy} of SYM.

“Evaluations” at diagonalized permutation matrices of these give symmetric group characters.
Structure constants of s are stable Kronecker coefficients

Structure constants of hy are also pretty nice B

They have many transition coefficients, e.g. hy — hy,.

They’re implemented in Sage.

Outline.

(1) Some Schur-Weyl duality
(2) Evaluations f[Z,]

(3) Computing hy[Z,]

(4) Defining hy, s
Definition 1. Let V be a polynomial GL(C™)-module. The Schur character of V' is the function

Ty
chV: cx;, €C* 3 - C
T

given by
Dw— Tr(—+— D-—).

It turns out that ch V' € C[zy, ..., x,,]. Furthermore, the irreducible polynomial representations of GL(C™)
are well-known modules V* where ) is a partition with at most m rows (unbounded number of boxes), and

chV? = a1,y Tm).

(See Fulton’s Young Tableaux, Chapter 8.) That is, evaluations of Schur functions are characters of GL(C™)-
modules at diagonal matrices.

Definition 2. Recall that if V1, V5 are GL(C™)-representations, then Vi ®¢ Vs is a GL(C™)-representation
with action

M- (vy ®@ug):i=(M-v1)® (M - vy).

Indeed,
ch(V; ® V2) = (ch V1) (ch Va).
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Hence the Schur polynomial structure constants cﬁu defined by

_ A
SuSy = CuSA

A
can be interpreted as saying
¢y, = {multiplicity of V* in V* @ V"}.
Question 3. Our motivation is the following: what if we evaluate f € C[zy,...,z,,] at just diagonalizations
of permutation matrices? Can we do this for f € SYM, say for our usual bases?
Notation 4. Let Zj denote the (multi)set of eigenvalues of the permutation matrix of a k-cycle, written

76271'7,/’(77 62»27rz/k’ B k71)2ﬂ'z/k:’

=1 el

Let E,, denote the multiset of eigenvalues of the matrix of a permutation of cycle type p,

[1]

Euc fi1s Spugs -
Definition 5. Fix a partition u. Define a map SYM — C by
k k (o
pr = (@] + -y ) (E),
extended algebraically. Denote this as

f= fEul

Intuitively, we imagine plugging in Z,,0,0, ... to a symmetric function.

Question 6. What is hy[Z,]?

To answer the question, we first introduce a slew of notation.

Notation 7.

o We write multisets as {{by,ba,...,b,}}, or as {191,292 . . (% }},

e A set partition of a set S is a set of subsets {S1,...,S¢} such that @ # S; C S, S; NS, for all ¢ # j,
and S1U---US, =S.

e By contrast, a multiset partition of a multiset S is a multiset 7 = {{S1,...,S¢}} such that @ # S; C S
and S;U---USy =5, both in the multiset sense. We write m H S.

e Write m(m) to denote the partition obtained from the list of multiplicities of the multiset 7. For
example,

m(H{{1, 1,21, {1, 1,21, {1,313 )}) = (2, 1).

We also need some symmetric function identities. Recall that
A
P =X (1)sx
A

where x* (1) is the character of the Specht module indexed by A at a permutation of cycle type . Consequently,
(5x:2u) = X (1)
(where we’ve used the Hall Inner Product, which can be defined by (s, s,) := 0x=,). Similarly,

(hx, Py} = (b 1157) (1)

where A\, u F n, Sy := S\, X S\, X -+ is a Young subgroup, and ch denotes the usual character of a
representation.

With all this notation, we can write out a nice answer to the above question:
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Theorem 8 (Theorem 2 in O-Z). For partitions A\, u (not necessarily of the same size), write
Hpu o= (hypj—x b, pu)-
(This is 0 if |\| > |p].) Then
ha[E,] = > Hii(x). o
{1, e )
The theorem motivates the following recursive definition:

Definition 9. Let Eu be the family of symmetric functions defined by
hy = > R
TH1M . e )}
Example 10. At A = (2), we consider multiset partitions 7 H- {{12}}, of which there are

= {1y {1y din iy

and which have m(w) = (2), (1), respectively. Hence

hez) = he) + hay.
Similarly we find h(y) = ﬁ(l), so that we are forced to use

he) = hez) = ha)-

Corollary 11. {ﬁ#} is a well-defined basis of SYM, where in fact

hA[E,] = Ha, = (ch 1T§‘<|ﬂ\wmw)(m

(where the last equality requires |u| > |A|).

The basis {EM} is thus called the induced trivial character basis. Note that infinitely many of the
evaluations of h) are all specified simultaneously as p varies over all partitions.

We can do the same thing but with S* instead of 1T§;‘. Formally,

Definition 12. Choose n > 2|u| and require
b= K a5
A A< pl

One may check the coefficients are independent of n and that this linear system can be inverted.
Corollary 13. {s,} is a well-defined basis of SYM, where in fact

SAE] = (s(umpatay o) = XNV (@)
where v F n, and the last equality requires n > |A| + A1.

The basis {5, } is thus called the irreducible character basis.

LECTURE 2

Outline.

(1) Recap

(2) Stable Kronecker coefficients
(3) {5a}; {hr} structure constants
(4) A uniqueness theorem

(5) An curious observation
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Remark 14. To summarize last lecture, we found:

e Two inhomogeneous bases {% A}, {50} of SYM. Top-degree pieces are hy, sj.
e Evaluations f[Z,] defined by

prlEp] = (xlf +e Tt x‘kp‘)(Eﬂ)

where =, is the multiset of eigenvalues of a permutation matrix of cycle type p.
e Nice properties:

~ Sin
halEu) = Hxp = (hjuj-jahas pu) = (ch 11" )

[PIEPN
and
SAE] = (= o) = XTI ().
(Technical note: if the Schur function’s index is not a partition, we define it formally by the Jacobi-
Trudi formula; see equation (9) in Orellana-Zabrocki. Likewise the irreducible character is only valid
at partition shapes.)

Question: what are the structure constants for {hy} and {5)}?
Definition 15. The tensor product of S, -representations U,V is the S,,-module U ®@¢ V given by
o-(u®v):= (0 -u)®(c-v).
We have some constants g, ,,» € Z>o such that
St ® S = BrguprS,
which are zero if A\, y, v are not all of the same size.
Cute fact: g, ., is independent of the order of the indexes.

Definition 16. The Kronecker product is the bilinear map on SYM given by
Su * Sy = Zgu7y,>\8,\.
A

Hence the Kronecker product of symmetric functions is the tensor product of the underlying S,,-representations.

Recall that under the Schur character, the tensor product of GL(C™)-representations corresponds to the
product of symmetric polynomials. Under the Frobenius character, the tensor product of S, -representations
corresponds to the Kronecker product of symmetric polynomials.

Theorem 17 (Murnaghan). gngu Nev,Nex converges as N — oo (indeed, monotonically)!

Definition 18. The stable or reduced Kronecker coefficients Q/;u are defined by
S(n—IALN) * S(n—lul) = D TuSn—hla
v

and similarly we define g} . by
Bn-AN) * Pl = D Tuln—
v

for n > 0.

Remark 19. Interestingly, E//\Yu = c:(u when |\ 4+ |u| = |y|- For a nice summary of stable Kronecker
coeflicients, see Briand-Orellana-Rosas, “The stability of the Kronecker product of Schur functions.”

Theorem 20 (Theorem 4 in Orellana-Zabrocki). We have

-~ — ~
SASu = § IxausSv
[V [A+]p

. .
hahy = > df,h.
I <IA+ul

and
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Remark 21. Orellana-Zabrocki also give descriptions for:

® a new Elvx L interpretation in terms of multiset partition shuffles

e transition coefficients h) — Eu, Sy — TLM, EA — Sy, ha =5, ex = 5, f~L,\ — Py S = Pus Px — S
I’d like to end with an approach to one of Orellana-Zabrocki’s results, which potentially suggests consider-
ation of a multivariate generalization of the evaluations f[Z,].

Proposition 22 (Proposition 54 in Orellana-Zabrocki). Let f,g € SYM with deg f,degg < n. Suppose

for all p with |p| <mn. Then f =g.

Proof. (Unfinished; see O-Z for a complete, but different proof.) We need to show that if
Z CAPX [EH] = 0
A A |<n

for all u where |p| < n, then ¢y = 0 for all A where |A\| < n. That is, we need the coefficient matrix (px[Z,])
to be nonsingular.

One can check that

p)\[Eﬂ] = H z M-

J il Ag
For instance, p2,1y[E2] = (1% + (=1))(1 + (1)) = 0, and the j = 2 factor is an empty sum which is also 0.

After playing around with a few examples, the determinant of this matrix tends to have quite a few factors.
Playing around a bit more, let My, M, ... and X7, X5, ... be formal parameters and consider the power series

Paei= 1D Minguin Xi
j =1
where

# copiesof i in o ifi|a

miwi,a) = {0 otherwise.
=#{jen:j=ila}.

(Here partitions have been stripped of zero parts.) For instance,

Po1y,2) = (Mo X1 + My Xy + Mo X3 + Mo Xy + Mo -+ ) (Mo X1 + Mo Xy + My ---).
Specializing M; — i, X; — i, P, becomes py[Z,].
For fixed n, let

D i= det(Pa) e Al ul <n-

Further, write

V(Mn):= [ M;—0).

0<i<j<n
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By brute force, we have:

Dy=1
Dy =V (M, 1)z,
Doy = V(M,2)V (M, 1)z3z,
D3 =V (M,3)V(M,1)*zx32;
Dy = V(M,4)V(M,2)*V (M, 1)%z* 2522z,
Ds = V(M,5)V(M,3)V(M,2)3V (M, 1) 2220z w325 2s.
Note that X; for i > n have canceled from D

i=1

where a = (o, ..., ) is a weak composition (probably with «,, = 1) and 8 = (B4, ..., 3,) is a partition
(probably with 8, = 1). The first few a, 3

n Q@ B8

0 0 0

1 (1) (1)

2 (1,1) (3,1)

3 (4,0,1) (7,2,1)

4] (6,2,01) | (14,5,2,1)

51 (12,3,1,0,1) | (26,9,4,2,1)

Of course, the conjecture explains the factorization of the original coefficient matrix to a large degree and
shows it to be nonsingular. g
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