
CYCLIC SIEVING AND SPRINGER’S REGULAR ELEMENTS

JOSH SWANSON

(This lecture was given at the University of Minnesota Student Combinatorics Seminar on November 3rd,
2016. Main references: [RSW04], [Spr74].)

Outline.

(1) Coxeter group CSP
(2) Complex reflection group background
(3) RSW proof
(4) Springer’s regular elements

1. Primary goal

Our basic definition is the following:

Definition 1 (Reiner-Stanton-White). Given (W,Cn, f(q)) where W is a finite Cn-set, and f(q) ∈ N[q], this
triple exhibits the cyclic sieving phenomenon if

f(ωkn) = #{w ∈W : σkn · w = w}
where Cn = 〈σn〉 and ωn ∈ C is a primitive nth root of unity.

Our primary goal is to prove the following theorem:

Theorem 2 ([RSW04, Thm. 1.6]). Let (W,S) be a finite Coxeter system and J ⊂ S. Let C be a cyclic
subgroup generated by a regular element of W . Let W J be the set of minimal length coset representatives for
W/WJ . Define

W J(q) :=
∑
w∈WJ

q`(w).

Then the triple
(W,C,W J(q))

exhibits the cyclic sieving phenomenon (CSP).

(Why? In tomorrow’s talk, we’ll generalize the type A case when C = 〈(1 2 · · · n)〉.)

A down-to-earth special case:

Corollary 3. Let Z/n act on
(Z/n
k

)
naturally. Then((

Z/n
k

)
,Z/n,

(
n

k

)
q

)
exhibits the CSP.

Remark 4. The following are regular for any (W,S):
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• the longest element w0;
• any Coxeter element, i.e. the product

∏
s∈S s taken in any order, all of which are conjugate.

In type An−1, w0 = n(n − 1) · · · 21 ∈ Sn, and the Coxeter elements are the n-cycles. Indeed, the regular
elements in Sn are precisely the elements with cycle types of the form (ab) or (ab, 1).

2. Complex reflection groups

We first deduce the preceding theorem from a more general result. We give some background before stating
it.

Definition 5. w ∈ GL(Cn) is a (pseudo-)reflection if |w| < ∞ and the stabilizer of w has codimension 1;
this stabilizer is called a reflecting hyperplane.

A (complex) reflection group is a finite subgroup W of GL(Cn) generated by reflections. The coinvariant
algebra of W is

A := C[x1, . . . , xn]/IW+
where

IW+ := (p : W · p = {p}, p(0, . . . , 0) = 0)

and w · p(x1, . . . , xn) = p(w · x1, . . . , w · xn) using Cn = 〈e1, . . . , en〉 ∼= Cx1 ⊕ · · · ⊕ Cxn. This is a graded
C-algebra and a graded W -module.

Note that each w ∈W is diagonalizable. An element w ∈W is regular if some eigenvector of w does not
lie in any of the reflecting hyperplanes of the reflections of W .

Example 6. Let W = Sn ⊂ GL(Cn) be given by permutation matrices. W is generated by si = (i i+ 1)
for 1 ≤ i < n which has reflecting hyperplane xi = xi+1. The reflections of W are the transpositions (i j)
for 1 ≤ i < j ≤ n with reflecting hyperplane xi = xj . The eigenspaces of h = (1 2 · · · n) are spanned by
(1, ωkn, . . . , (ω

k
n)n−1), so h is regular.

IW+ is generated by the homogeneous symmetric polynomials of positive degree, so IW+ = (e1, e2, . . . , en).
It is not immediately obvious, but a basis for the coinvariant algebtra A is given by the “staircase monomials”
{xa11 · · ·xann : ai ≤ n− i}, and in particular dimCA = n!.

Definition 7. Let R = ⊕i≥0Rd be a graded C-algebra. Its Hilbert series is

Hilb(R; q) :=
∑
i≥0

(dimCRi)q
i.

Theorem 8 ([RSW04, Thm. 8.2]). Let W be a complex reflection group, σ ∈ W regular, W ′ ≤ W any

subgroup, AW
′

the W ′-invariant (graded) subalgebra of the coinvariant algebra of W . Then

(W/W ′, 〈c〉,Hilb(AW
′
, q))

exhibits the CSP.

We can deduce the first theorem from the second using the following two observations. First, finite Coxeter
groups are precisely those complex reflection groups which arise from extending scalars for real reflection
groups. Second:

Fact 9 ([Hil82, §IV.4]). Let (W,S) be a finite Coxeter system, J ⊂ S. Then

Hilb(AWJ , q) =
∑
w∈WJ

q`(w) = W J(q).
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3. RSW proof

For the second theorem, the key is a generalization of the following well-known result:

Theorem 10 ([Che55]). Let W be a complex reflection group. Then A ∼= CW as W -modules.

Theorem 11 ([Spr74, Prop. 4.5], cf. [KW01]). Let W be a complex reflection group, c ∈W regular of order
n, and A the coinvariant algebra of W . Let A be a W × C-module via

c · xi := ωnxi

for a fixed primitive nth root of unity ωn. Let CW be a W × C-module via

(w, c) · u = wuc.

Then A ∼= CW as W × C-modules.

Given this, we’ll now sketch the proof of the second theorem:

Proof. Consider (W,Cn, f(q)) with Cn = 〈σn〉. Let χi : Cn → C× via χi(ωn) := ωin.

It’s straightforward to check that (W,Cn, f(q)) exhibits the CSP if and only if

f(q) ≡
n−1∑
i=0

aiq
i (mod qn − 1)

where ai is the multiplicity of χi in the Cn-module C[W ]. (Note: C[W ] is the C-vector space with basis W
and the induced CCn-module action; CW is the group algebra of W .)

A restatement of this observation is the following. Let X = ⊕n−1i=0 Xi be the C-vector space where
dimXi = ai and σn acts on Xi as multiplication by ωin. The triple (W,Cn, f(q)) exhibits the CSP if and
only if W ∼= X as Cn-modules.

Now consider (W/W ′, 〈c〉,Hilb(AW
′
, q)). By Springer’s theorem, A ∼= CW as W × C-modules, so AW

′ ∼=
(CW )W

′
as C-modules. Notice that ωn acts on the ith component of AW

′
by multiplication by ωin. It follows

that AW
′ ∼= X as C-modules. So, we must only show (CW )W

′ ∼= C[W/W ′] as C-modules. Indeed, it’s
straightforward to check that

Φ: C[W/W ′]→ (CW )W
′

given by

Φ(wW ′) :=
∑

u∈wW ′

u

gives an isomorphism of C-modules. (Technically, (CW )W
′

are the right W ′-invariants here, but CW is
abelian, so it’s not an issue.) �

4. Springer’s Result

It takes some effort to translate Springer’s actual result into the theorem above. This step doesn’t seem to
have been written down (e.g. it’s not in [RSW04]), but here’s my write up. We first state Springer’s result in
his language and then describe the translation.
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Definition 12. Let G be a complex reflection group. Suppose ρ is an irreducible complex representation of
G with character χ. Let A = ⊕i≥0Ai be the coinvariant algebra of G graded by degree. The χ-exponents of
G form the multiset {pj(χ)}j of degrees of the copies of χ in A.

For instance, if 〈χ,A1〉 = 2, 〈χ,A2〉 = 3, and the rest are 0, then {pj(χ)} = {1, 1, 2, 2, 2}.

Proposition 13 ([Spr74, Prop. 4.5]). Let G be a complex reflection group. Suppose g ∈ G has an eigenvector
with eigenvalue ζ contained in no reflecting hyperplane of G. Let ρ be an irreducible complex representation
of G, with character χ. Then the eigenvalues of g in the representation ρ are the ζ−pj(χ), where the pj(χ) are
the χ-exponents of G.

We now show the two results’ relatively straightforward equivalence.

Remark 14. Continue the notation of Springer’s result. A consequence of [Spr74, Thm. 4.2] is that ζ above
has the same multiplicative order as g, call it d.

Let C := 〈g〉 and set

χi : C → C×

g 7→ ζ−i.

for 0 ≤ i < d. Note that the irreducible representations of G× C are precisely of the form ρ� χi for some
unique irreducible ρ of G and i, where

(ρ� χi)(w, c) := χi(c)ρ(w).

The eigendecomposition of ρ(g) gives the irreducible decomposition of ρ↓GC . A restatement of Springer’s
result is then:

〈χi, ρ↓GC〉 = multiplicity of ζ−i in {ζ−pj(χ)} =
∑
j:j≡di

〈ρ,Aj〉.

Giving Aj the above G× C-action,

(w, g) · p(x1, . . . , xn) := p(w · ζx1, . . . , w · ζxn),

we again find that g acts on Aj as multiplication by ζj . Hence any G-submodule of Aj is indeed a G× C-
submodule. It follows that

〈ρ� χi, Aj〉 =

{
〈ρ,Aj〉 if i ≡d j
0 otherwise.

Hence another restatement of Springer’s result is

〈χi, ρ↓GC〉 = 〈ρ� χi, A〉.

On the other hand, write CG to denote CG with the above G× C-action,

(w, g) · u := wug.

Hence CC ∼= A if and only if

〈ρ� χi, A〉 = 〈ρ� χi,CG〉.
We’ll directly show

〈χi↑GC , ρ〉 = 〈ρ� χi,CG〉
which, using Frobenius reciprocity, will establish the equivalence of Springer’s result and the RSW restatement.

First, note that as left C-modules

CC ∼= ⊕d−1j=0χ
j

so that as left G-modules

CG ∼= CC↑GC= CG⊗CC CC ∼= ⊕d−1j=0(CG⊗CC χ
j).
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Write χj↑GC to denote χj↑GC with the G× C-action

(w, g) · u⊗ v := (wug)⊗ v = (wu)⊗ (g · v) = ζj(wu⊗ v)

The preceding G-module isomorphism then yields a G× C-module isomorphism

CG ∼= ⊕d−1j=0χ
j↑GC .

Hence it suffices to show
〈ρ� χi, χj↑GC〉 = δij〈ρ, χi↑GC〉.

Since g acts on χj↑GC as multiplication by ζj , this follows as before for 〈ρ� χi, Aj〉.
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