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Basic references:

• Reiner, Stanton, White (2004), “The Cyclic Sieving Phenomenon”: the original paper.
• Sagan (2011), “The cyclic sieving phenomenon: a survey”: nicely written survey as of a few years

ago. We’ll more or less go through the first 15 pages.

Outline.

(1) Motivational example
(2) Test case—direct proof paradigm
(3) Representation theory paradigm and example
(4) Further directions

Example 1. Suppose one day you were playing with a generating function for a statistic on combinatorial
objects, say words of content {12, 22} using inversions. These are

1122 1212 2112 ⇒ # inversions: 0 1 2

1221 2121 2 3

2211 4

The generating function is 1 + q + 2q2 + q3 + q4. At q = 1 this counts the number of such words. At q = −1?
Gives 2. At q = ±i? Gives 0. These are all non-negative integers. Are they counting something?

Cyclic sieving is a remarkably general “explanation scheme”:

Definition 2. Let f(q) ∈ N[q] and suppose X is a set of size f(1). Let Cn be a cyclic group of order n, and
suppose Cn acts on X. Write ωd for a primitive dth root of unity. If

f(ωd) = #{x ∈ G : α · x = x}
whenever α ∈ Cn has order d, then (X,Cn, f(q)) exhibits the cyclic sieving phenomenon (CSP).

Note that f ∈ N[q] means f is constant on different primitive dth roots of unity.

Example 3. Let 〈(1234)〉 ≤ S4 act on words of content {12, 22} by permuting indexes. Then (1234) has
order 4 and fixes no element, and (13)(24) fixes only 2121 and 1212. The identity fixes all six. Hence by
direct computation, the above generating function with this action exhibits the cyclic sieving phenomenon.

Our main example is a little different from the motivational one in part because the representation theoretic
argument ends up being nicer.

Definition 4. Let

[n]q := 1 + q + · · ·+ qn−1

[n]q! := [n]q[n− 1]q · · · [1]q(
n

k

)
q

:=
[n]q!

[k]q![n− k]q!
∈ N[q]
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(where the q-binomial coefficient is in N[q] since it satisfies a Pascal’s triangle-like recurrence; at q = 1 it
counts the number of k-element subsets of [n], and at prime powers it counts the number of k-dimensional
subspaces of Fnq ). Set ((

[n]

k

))
:= {M : M is a k-element multiset on [n]}.

For instance, at n = 3, k = 2, this is the set {11, 12, 13, 22, 23, 33}. By “stars and bars”,

#

((
[n]

k

))
=

(
n+ k − 1

k

)
.

Let 〈σn := (12 · · ·n)〉 ⊂ Sn act on this set by permuting values: (123) · 33 = 11. As it turns out,((
3 + 2− 1

2

))
q

= 1 + q + 2q2 + q3 + q4.

(Here n = 3, not 4.) (123) has fixes no element of
((

[3]
2

))
, and indeed the polynomial is zero at ω3, so we again

have the CSP.

Theorem 5. The triple (((
[n]

k

))
, 〈12 · · ·n〉,

(
n+ k − 1

k

)
q

)
exhibits the CSP.

We first give a direct, elementary proof, which does not explain why we might expect such behavior to
exist in the first place.

Proof. One idea is to explicitly compute both the fixed point set sizes and evaluations of the q-binomial
coefficient. For the first, we have:

Lemma 6. Let g ∈ Sn have disjoint cycle decomposition g = c1 · · · ct. Then for M ∈
((

[n]
k

))
, g ·M = M if

and only if

M = cr1
∐
· · ·
∐

crs ,

where here we view cycles as (multi)sets and the disjoint union adds multiplicities of multisets.

Proof. ...by example: what does (124)(35) fix in
((

[5]
4

))
? Only 3355. In general we need multiplicities to be

constant on cycles. �

Corollary 7. Let α = σ
n/d
n , which has order d | n. Then

#

((
[n]

k

))α
=

{(
n/d+k/d−1

k/d

)
if d | k

0 otherwise
.

Having identified half of the required equation, what is
(
n+k−1

k

)
q=ωd

? An example is illuminating:(
4

2

)
q=ω2

=
[4]q[3]q

[2]q

∣∣∣∣
q=−1

=
0 · 1

0

so consider

lim
q→−1

[4]q
[2]q

= lim
q→−1

(1 + q) + q2(1 + q)

1 + q
= 2 =

4

2
.
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Hence
(
4
2

)
q=ω2

= 4/2. Generalizing this computation quickly yields the same formula as before,(
n+ k − 1

k

)
q=ωd

=

{(
n/d+k/d−1

k/d

)
if d | k

0 otherwise
.

�

This is nice, but a bit messy and unenlightening. Why should we even expect fixed point sets to be counted
by evaluations of a polynomial at roots of unity?

Definition 8. Let G be a finite group acting on a set X. Let CX denote the C-vector space with basis X;
G acts on CX by linear automorphisms. The character of this action is χ : G→ C given by

χ(g) := Tr([g] ∈ GL(CX)).

Remark 9. Viewing [g] in the X basis, [g] is a permutation matrix with fixed points on the main diagonal.
Hence

χ(g) = #Xg,

so cyclic sieving really says that our polynomial is encoding these character values at its evaluations.

On the other hand, let G = Cn be a cyclic group. (Now we’ll assume some basic representation theory of
finite dimensional G-modules over C.) What are the irreducible Cn-modules? It’s abelian, so it has as many
1-dimensional representations as elements, which must be all of them. What are they? We can declare 1 to
act as ωjn for j = 0, 1, . . . , n− 1 on C = C[1], written C(j). These are inequivalent since their traces (ωjn) are
distinct. Hence Cn acting on CX decomposes as Cn acting on

m0C
(0) ⊕ · · · ⊕mnC

(n)

for mj ∈ N. A generator in this basis has matrix

1
. . .

1
. . .

ωn−1n

. . .

ωn−1n


where ωjn appears mj times. It follows that a general element of α of order d has trace

χ(α) =
∑
j

mjω
jn/d
n =

∑
j

mjq
j

∣∣∣∣∣∣
q=ωd

Remark 10. Hence the CSP happens literally every time we have a cyclic group acting on a finite set if
we use f(q) :=

∑n−1
j=0 mjq

j . This f has degree at most n − 1, making it in some sense uninteresting—for
instance, our motivational example already has degree 4 > 3 = n.

Note that all such f ’s are equivalent mod (qn − 1). The “interesting” part of CSP is finding a polynomial
which has some intrinsic interest that also happens to exhibit CSP.

It is a fact that the character of a finite dimensional representation of a finite group over C determines the
representation up to equivalence. Hence each CSP has a unique Cn-module giving rise to its polynomial.

Our next goal is to give a representation-theoretic proof of the previous result. We will identify an
appropriate Cn-module and evaluate the character cleverly, without ever deriving the explicit formulas above.
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Proof. Consider C[n]⊗k, the k-fold tensor product of the n-dimensional C-vector space C[n], which has basis

{i1 ⊗ · · · ⊗ ik : ij ∈ [n]}.
Let Symk(n) denote the k-th symmetric power of C[n], namely

Symk(n) :=
C[n]⊗k

i1 ⊗ · · · ⊗ ik = iu(1) ⊗ · · · ⊗ iu(k)
∀u ∈ Sk

which has basis
{[i1 ⊗ · · · ⊗ ik] : 1 ≤ i1 ≤ · · · ≤ ik ≤ n},

which is naturally indexed by
((

[n]
k

))
. (We’ll now write i1 · · · ik instead of [i1 ⊗ · · · ⊗ ik].) Now, 〈(12 · · ·n)〉

acts on C[n] on values, so it acts on C[n]⊗k and Symk(n). Indeed, we have an isomorphism of 〈σn〉-modules

Symk(n) ∼= C
((

[n]

k

))
,

so it suffices to consider the character of Symk(n) and in particular to show the character of α of order d is(
n+k−1

k

)
q=ωd

n
.

Evidently αn = id, so the minimal polynomial of α ∈ GL(C[n]) divides xn − 1, which has distinct roots, so
α is diagonalizable, say with basis {b1, . . . , bn}. This yields a basis

{bi1 · · · bik : 1 ≤ i1 ≤ · · · ≤ ik ≤ n}
for Symk(n), where bi has some eigenvalue xi. Indeed, this yields a basis in which α ∈ GL(Symk(n)) is
diagonal:

α · (bi1 · · · bik) = (α · bi1) · · · (α · bik) = xi1 · · ·xik(bi1 · · · bik).

Indeed, this shows

χ(α) =
∑

1≤i1≤···≤ik≤n

xi1 · · ·xik =: hk(x1, . . . , xn).

(Incidentally, we used multisets instead of subsets since subsets use the kth exterior power and ek(x1, . . . , xn),
which involves keeping track of some negatives.) Indeed, it’s easy to see that we may take (x1, . . . , xn) =
(1, q, . . . , qn−1) where q = ωd. Hence the result follows from the following principal specialization:

Lemma 11. If n ≥ 1 and k ≥ 0, then

hk(1, q, . . . , qn−1) =

(
n+ k − 1

k

)
q

.

Proof. One can show both sides satisfy a Pascal’s triangle-like recurrence. �

�

We now turn to some more advanced and general examples. We certainly won’t have time to define all the
terms involved.

Definition 12. Let (W,S) be a finite Coxeter system, let J ⊂ S, take WJ to be the parabolic subgroup
generated by S, and let W J denote the set of minimal length coset representatives of W/WJ . Define

W J(q) :=
∑
w∈WJ

q`(w).

(For example, S
[n−1]−{k}
n (q) =

(
n
k

)
q

and S∅
n (q) =

∑
w∈Sn

q`(w) = [n]q! =
∑
w∈Sn

qmajw.)

Theorem 13 (Reiner-Stanton-White). The triple

(W/WJ , C,W
J(q))

exhibits the CSP (where C ≤ W is cyclically generated by a “regular” element, meaning one which, as an
element of W viewed as a complex reflection group, contains an eigenvector which is not in any of the
reflecting hyperplanes).
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Using maximal parabolic subgroups in type A and ignoring the multiset-subset distinction, this is essentially
a vast generalization of the theorem we proved above. It has a further complex reflection group generalization:

Definition 14. Let W be a finite complex reflection group with subgroup W ′. Let A = S/SW+ be the

coinvariant algebra of W and let AW
′

denote the W ′-invariants of the coinvariant algebra of W . Write
Hilb(AW

′
; q) for the Hilbert series of AW

′
, namely the dimension generating function of the homogeneous

components of the graded algebra AW
′
.

Theorem 15 (Springer, 1974). C[W ] and A have natural, isomorphic W × C-actions, where C is cyclically
generated by a regular element.

Ignoring the C piece in the theorem gives a classic result of Borel: the coinvariant algebra is often thought
of as a graded analogue of the regular representation. As for the promised generalization, we have:

Theorem 16 (Reiner-Stanton-White). The triple

(W/W ′, C,Hilb(AW
′
; q))

exhibits the CSP.

For an example of the CSP of a very different flavor, Rhoades proved that the “promotion” action on
SYT((nm)) using a q-analogue of the hook length formula,

fλ(q) :=
[n]q!∏

(i,j)∈λ[hi,j ]q
,

exhibits the CSP. In another vein, Sagan-Shareshian-Wachs showed that 〈(12 · · ·n)〉 acting by conjugation
on the subset of Sn consisting of permutations with cycle type λ using the maj− exc generating function
exhibits the CSP. In one more direction, one may generalize the notion of cyclic sieving from cyclic groups to
abelian groups (≡ products of cyclic groups) by keeping track of multiple statistics.

(Notes to self: this was maybe 75 minutes; cut out direct proof paradigm.)


