
SCHUBERT MULTIPLICATION RULES AND BRUHAT CHAINS

JOSH SWANSON

Abstract. Seminar and pre-seminar presentation notes.

1. Pre-seminar

Definition 1. Young’s lattice is the lattice consisting of integer partitions. Meet is intersection

of Young diagrams, or component-wise min; join is union, or component-wise max. Covers

add a single box. We tend to think in French notation. Examples: a row; a column; a hook.

Content is constant along diagonals, increasing to the southeast, starting at, say, 0.

Definition 2. A standard Young tableau of skew shape λ/µ (SYT) is a saturated chain

through Young’s lattice starting at µ and ending at λ. Nice enumerative formula:

n! =
∑
λ`n

# SYT(λ)2.

Also, the hook length formula: # SYT(λ) = n!/
∏

c hc where c ranges over the cells of λ and

hc is the length of the “hook” through c.

Definition 3. A semi-standard Young tableaux of skew shape λ/µ and weight ν (SSYT) is a

standard Young tableaux with the additional constraint that the first ν1 boxes are added

left-to-right, the next ν2 are added left-to-right, etc. Note that ν is a composition in general.

Definition 4. The skew Schur functions sλ/µ are the weight generating functions for the

semi-standard tableaux of skew shape λ/µ. Precisely,

sλ/µ =
∑

T∈SSYT(λ/µ,ν)

xν
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Figure 1. A tableau T of skew shape λ/µ in French notation with µ =
(8, 4, 3, 1, 1) ⊂ (10, 7, 6, 5, 1) = λ. Dashed boxes belong to µ, non-dashed boxes
belong to λ−µ. This tableau is semi-standard of weight α(T ) = ν = (5, 4, 2, 1),
so Kλ/µ,ν ≥ 1. It has reverse reading word 112113214322, which is Yamanouchi,
so cλµ,ν ≥ 1. We also have ht(µ) = 5 = ht(λ) and |λ/µ| = 29− 17 = 12.

where xν :=
∏

i x
νi
i .

Example 5. s(1) = x1 + x2 + · · · , s(2) =
∑

i≤j xixj. In general, s(m) = hm, s(1m) = em,

s(p,1q−1) =?. The last one is alright as a sum, though in terms of other symmetric functions,

the best relation is probably the Murnaghan-Nakayama base case, pm = s(m) − s(m−1,1) +

s(m−2,12) − · · ·+ (−1)m−1s(1m).

These functions are symmetric, i.e. sλ/µ(x1, x2, . . .) = sλ/µ(w(x1), w(x2), . . .) for any w : P ∼→

P (or equivalently for any w ∈ S∞). These functions are elements of a power series ring and

actually form a Z-basis for the ring of symmetric power series in x1, x2, . . . of bounded degree.

Schur polynomials are given by restricting to just variables x1, . . . , xk, or equivalently by

setting 0 = xk+1 = xk+2 = · · · .

Definition 6. The Littlewood–Richardson coefficients cλµ,ν are defined via sµsν =:
∑

λ c
λ
µ,νsλ.

For instance, cλµ,ν = cλν,µ.

Theorem 7 (Pieri’s rule). sµs(m) =
∑
sλ where the sum is over λ obtained from µ by adding

m boxes, no two in the same column. Equivalently, sµs(m) =
∑

λ sλ# SSYT(λ/µ, (m)).

Theorem 8 (Littlewood–Richardson rule). sµsν =
∑
sλ where the sum is over semi-standard

tableaux T of skew shape λ/µ with weight ν which are Yamanouchi, meaning as we read

the reverse reading word of T , the number of i’s we’ve encountered is always at least as

large as the number of i − 1’s. (Ex: the first letter we read must be 1.) Equivalently,

sµsν =
∑

λ sλ# SSYT(λ/µ, ν; Yam).
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Definition 9. The symmetric group Sn on n letters has a standard presentation as follows.

Its generators are s1, . . . , sn−1 subject to the relations s2i = 1, sisj = sjsi if |i− j| > 1, and

sisi+1si = si+1sisi+1 (the braid relations). Every w ∈ Sn has a minimum length as a word in

these generators called its length, denoted `(w).

Example 10. `(uv) = `(u) + `(v) fails miserably in general, ex. `(s1s1) = 0 6= 1 + 1. Equality

does hold mod two—why? Basically, because each relation preserves parity.

The right descent set of w ∈ Sn is the set of si such that `(wsi) < `(w). Can read them off.

Definition 11. The Bruhat order on Sn is given by the subword criterion: we declare u ≤ v

whenever there is some minimal length word for u which is a subword for a minimal length

word of v. Draw S3’s Bruhat order. The covering relations in Bruhat order are of the form

u→ utab where tab interchanges a, b, a < b, and the permutation matrix for u is as drawn—or

when `(utab) = `(u) + 1. For us, the content of a covering relation u→ utab is u(b).

Definition 12. Schubert polynomials are elements of Z[x1, x2, . . .] indexed by w ∈ S∞. They

form a Z-basis for this ring in much the same way Schur functions form a Z-basis for their

power series ring. We’ll give the divided difference definition at the start of the real seminar.

You can also recall Sara’s definition from last week in terms of “reduced pipe dreams”. In

particular, the BJS formula says Sw is the weight generating function for reduced pipe dreams

for w, where the weight is composition formed by the number of plusses in each row of the

pipe dream.

Example 13. List the rc-graphs for S3 and the corresponding Schubert polynomials.

Definition 14. The k-Bruhat order on Sn for 1 ≤ k < n is given by the following covering

relations: u ≤k v whenever v = utab is a Bruhat covering relation and a ≤ k < b. Draw

2-Bruhat order on S3.

Proposition 15. For 1 ≤ k < n, there is a natural inclusion of labeled directed graphs

v(−; k) : Yn,k ↪→ Bn,k. It is given by v(λ; k)(i)− i = λk+1−i for 1 ≤ i ≤ k with the remaining
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entries arranged in increasing order. A covering relation µ→ λ with content c is sent to a

covering relation ν(µ)→ ν(λ) with content c + 1. This map is rank-preserving, has image

consisting of all elements comparable to the identity in k-Bruhat order, and is an isomorphism

onto its image. The maps v(−; k) are compatible as n > k varies, so we frequently refer to

the k-Grassmannian of shape λ (where ht(λ) ≤ k) as v(λ; k) ∈ S∞.

In fact, if µ ⊂ λ, a reduced word for v(λ; k)v(µ; k)−1 is given by forming a tableau of skew

shape λ/µ, filling each box with sc+k where c is the content of that box, and reading off the

entries of the tableau from the topmost row to the bottommost, going right to left along each

row.

Example 16. v((1); 1) ∈ S3 is just s1. Indeed, v(−; 1) and v(−; 2) together cover all of S3.

Won’t really explain, but great picture to have for how these things fit together: compositions

in staircase shape yield all of Sn; the “partitions” are the image of the v’s; the lowest occupied

row is the k.

Correspondingly, Sv(λ;k)(x1, . . . , xn) = sλ(x1, . . . , xk). Hence in S3 all Schubert polynomials

are just Schur polynomials, which we’ve already computed. This begins to fail in S4: example?

Remark 17. I very much doubt there will be extra time, but if there happens to be, jdt via

growth diagrams would be a nice addition.

2. Seminar

Remark 18. Outline:

1. k-Bruhat order and Young’s lattice; Schubert and Schur polynomials

2. Schubert varieties, intersections, cohomology of Grassmannians and flag manifolds

3. Monk’s rule, Sottile’s Pieri rule, and a conjectured generalization

4. Pattern algebras

Rationale: first five minutes understandable, so start explicit. We’ll explain the geometric

underpinnings of (1) in (2) which also motivates the study of multiplication rules. In (3) we
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give some Schubert multiplication rules and in (4) we’ll introduce pattern algebras as a tool

for studying such rules.

Definition 19. (Pictures: Bruhat order on S3; descents in S3; Schubert poly’s in S3; 1- and

2-Bruhat order on S3 using v(−; k)’s.)

• Length: `(w) = # inv.

• Longest element: w0 ∈ Sn means [n, n− 1, . . . , 1].

• Bruhat order: covering relations: u→ v iff v = utab and `(v) = `(u) + 1.

• (Right) descents: for w ∈ Sn, Des(w) = {i : w(i) > w(i+ 1)} ⊂ [n− 1].

• Divided difference operators: for f ∈ Z[x1, x2, . . .], ∂i := (f−si ·f)/(xi−xi+1). Verbal:

∂2i = 0, etc.

• Schubert polynomials: Sw0 := xn−11 xn−22 · · ·x1n−1. Ex: (see picture)

S[231] = ∂2S[321] = (x2y − x2z)/(y − z) = x2.

• k-Grassmannians: w ∈ Sn such that Des(w) ⊂ {k}.

• Bijection: Y = Young’s lattice, Yn,k = {λ ⊂ ((n− k)k)}. Have bijection

v(−; k) : Yn,k → {k-Grassmannians in Sn}.

• k-Bruhat order: u→k v iff v = utab, `(v) = `(u) + 1, and a ≤ k < b.

• Littlewood–Richardson coefficients:
∑

λ∈Y c
λ
µ,νsλ := sµsν and

∑
w∈S∞ c

w
u,vSw :=

SuSv.

Proposition 20. Facts:

• (Yn,k,⊂) embeds in (Sn,≤k) via v(−; k).

• Sv(λ;k) = sλ(x1, . . . , xk). Verbal: there are 2n−n Grassmannians in Sn, a worse-than-

exponentially-decaying fraction of n!.

• Sw well-defined under Sn ↪→ Sn+1.

• {Sw}w∈S∞ is Z-basis for Z[x1, x2, . . .]. Compare with {sλ}λ∈Y as Z-basis for SYM.
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Remark 21. Verbal: Schubs generalize Schurs, Schurs are interesting, ergo Schubs are

hopefully interesting. cλµ,ν show up in the representation theory of Sn or GLn(C), Horn’s

conjecture, abelian p-group extensions, and Schubert calculus.

Schubert polynomials come from generalizing Schubert calculus. The underlying geometry

is intrinsically interesting to many and at any rate gives a geometric guarantee that the

combinatorial study of Schubert polynomials will prove interesting and non-trivial. It also

suggests an enormous number of generalizations and variations, which we’ll very briefly

mention later.

Remark 22. Schubert calculus motivation. Classical case: Grassmannians and Schur

functions; modern case: flag manifolds and Schubert polynomials.

Question: # lines passing through four generic lines in R3?

X = affine lines through a fixed line in R3.

Projectivize; identify affine lines in R3 with non-affine 2-planes in R4, so X ⊂ Gr2(R4). Fact:

X is an irreducible subvariety. WLOG,

X = {V ∈ Gr2(R4) : dimV ∩ Span{e1, e2} ≥ 1}.

Need to compute # points in intersection of four generic translates of X. This is a job for

the Chow ring.

Remark 23. Classical Schubert calculus summary:

• Schubert varieties in Grk(K
n): closed subvarieties {Ωλ}λ∈Yn,k

; X = Ω(1) for K = R.

• Chow ring: formal sums of subvarieties up to rational equivalence, graded by codi-

mension, with multiplication (in the transverse case) being literal intersection.

• For K = C, have A∗(Grk(Cn),Z) ∼= H∗(Grk(Cn),Z).

• Schubert classes: σλ is the cycle of Ωλ in A∗. Verbal: Ωλ ↪→ Grk(K
n) induces injection

on homology; realizes [Ωλ] ∈ H2(k(n−k)−|λ|(Grk(Cn),Z); get σλ ∈ H2|λ| by Poincare

duality. σλ 7→ σλ under the above isomorphism.
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• Overwhelming tradition: use H∗ and K = C.

• The cycles of Ωλ’s or σλ’s form Z-bases for A∗(Grk(K
n),Z) or H∗(Grk(Cn),Z). Verbal:

the open schubert cells yield a CW-decomposition for Grk(Cn); closures are the

Schubert varieties.

• Fact:

H∗(Grk(Cn),Z) ∼=
Z[x1, . . . , xk]

Sk

SpanZ{sλ(x1, . . . , xk) : λ 6∈ Yn,k}
∼=

SYM

SpanZ{sλ : λ 6∈ Yn,k}
.

Here σλ 7→ sλ(x1, . . . , xk).

Example 24.

• How many lines? Need number of “points” in σ4
(1) ∈ H∗(Gr2(C4),Z). A point is σ(2,2).

• Expand s4(1) by Pieri; get 2. Verbal: this is easy to see if the first two lines and the last

two lines intersect. The line through these intersections and the line of intersection of

the planes these pairs determine are the answers.

Remark 25. Modern Schubert calculus summary:

• Fln: saturated chains of subspaces of Cn.

• Schubert varieties in Fln: Ωw for w ∈ Sn.

• Indeed, Ωλ ⊂ Ωµ iff λ ⊃ µ, iff v(λ; k) ≥ v(µ; k) in Bruhat. Moreover, Ωv ⊂ Ωu iff

v ≥ u in Bruhat.

• σw as before in A∗ or H∗ form a Z-basis.

• Fact: (Borel)

H∗(Fln,Z) ∼=
Z[x1, . . . , xn]

In
∼=

Z[x1, x2, . . .]

SpanZ{Sw : w 6∈ Sn}

where In is symmetric polynomials in x1, . . . , xn with no constant term. Here σw 7→

Sw.

• Fln � Grk(Cn) induces injection in H∗ with sλ(x1, . . . , xk) 7→ Sv(λ;k).

• Verbal: partial flag manifolds and descent sets.

Remark 26. Schubert multiplication rules:
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• Classical Schubert calculus: Pieri’s rule; Littlewood–Richardson rule solve it.

• Modern Schubert calculus: more or less wide open. I’m interested in improving this

situation.

• Verbal segue: have given at least some geometric motivation for everything from first

part except perhaps k-Bruhat order.

Theorem 27 (Monk’s Rule, 1959). We have

SuSsk = Su · (x1 + · · ·+ xk) =
∑
u→kw

Sw.

Verbal: shockingly powerful; can expand a Schub in the monomial basis (with this, even!)

and compute action of each xk = Ssk − Ssk−1
to compute all cwu,v. Many negatives and

cancellations—doesn’t count.

Remark 28. Sottile’s Pieri rule background:

• Classical Pieri’s rule: expand s(2)s(2). Add boxes “no two in the same column”, or

equivalently add with increasing contents—draw content.

• Label covers in Y with content of added box.

• Label covers in Sn with “content”: if u→ v = utab, the content is u(b) = v(a).

• Verbal: v(−; k) respects this up to an additive constant.

Theorem 29 (Sottile’s Pieri rule. Verbal: LS, BB.). We have

Sus(m)(x1, . . . , xk) =
∑
∗

Sw

where the sum is over saturated chains starting at u with m covering relations through

k-Bruhat order on S∞ with increasing sequence of contents.

Definition 30. Given a saturated chain α through Bruhat order and a partition ν of the

same length, call the filling of ν by α the tableau obtained by making ν’s reverse reading

word the word of α, that is, its sequence of contents.
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Conjecture 31. We have

cwu,v(ν;k) = #{chains α : u→ w in k-Bruhat order on S∞ whose filling

of ν by α strictly decreases along rows and columns}

if either

(1) (Kogan case.) Each descent of u occurs at or before k.

(2) (Two-step case.) #(Des(u) ∪ {k}) ≤ 2.

Remark 32.

• Generalizes Monk’s rule, Sottile’s Pieri rule, hook rule, Littlewood–Richardson rule;

works in trivial cases.

• Computationally verified through n = 8.

• Three-step variant false in n = 5 without modification.

• Hope to prove and generalize.

• Example?

Remark 33. Main approaches to Schubert multiplication rules:

• rc-graphs/pipe dreams: Billey–Bergeron, Kogan, Kogan–Kumar.

• Fomin–Kirillov algebra: FK, Postnikov, Meszaros et al.

• Bruhat order and geometry: Sottile, Bergeron–Sottile, Lenart–Sottile. Grassmannian

Bruhat order, symmetric function, ABS preprint.

• Pure geometry: Pieri (classical), Vakil, Coskun.

• Knutson–Tao[–Woordward] puzzles and honeycombs; Bernstein–Zelevinski polytopes.

• Generalize and prove analogues of Monk’s rule or Pieri’s rule: quantum, equivariant,

quantum equivariant, K-theoretic, types B − D, affine Grassmannians, and a few

others.

Remark 34. Pattern algebras:

• Let G be a directed 5-cycle with labeled vertices.
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• Let ∗k operate on the free Z-module with basis the vertices of G via

∗k(u) :=
∑
v∈G

(# paths u→ v)v.

Algebra generated by {1 = ∗0, ∗1, ∗2, . . .}? Just Z[x]/(xn − 1).

• Inspiration from Pieri’s rule: don’t want to sum over all paths, only some whose labels

match certain conditions. In quantum case, don’t want to just count paths, but want

to weight them.

• Pattern algebra: (1) pattern monoid Γ; (2) weight function W ; (3) graph G: P (G,W ).

Verbal: functorial....

• Verbal: very general, ex. every algebra over a field is a pattern algebra. Can make

incidence algebras a special case.

• Up-down algebras: Γ is words in ∗, ↑, ↓ prefixed by ∗; up-down weight W ; G = Y for

UD or Yn,k for UD(n, k).

• Thm: UD is abelian; UD ∼= SYM; UD(n, k) ∼= H∗(Grk(Cn),Z). (“Natural basis”:

{s̃λ}; s̃λ 7→ sλ.) Verbal: more true: pattern algebras have natural bilinear forms, here

gives Hall inner product, etc.

• Glued up-down algebras GUD(n): G = Sn, GUD(n) ∼= H∗(Fln,Z). Verbal: alternate

Sottile Pieri rule route through GUD(n)—commutativity, bijections inspired by pure

algebra. Natural basis of Schubs. Hopefully these can generalize to cover conjecture—

more work needed!

• GUD(n) suggests {hw}w∈Sn generalizing hλ’s; these satisfy generalization of dominance

order.
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