
25 §17: The PBW Theorem

The following are lecture notes based on §17 of Humphreys, covering universal
enveloping algebras, the PBW theorem, and some consequences. (Speaker: Josh
Swanson.)

Comment Outline:

1. Notation, overview

2. Universal properties; T(L),S(L),U(L)

3. Associated graded objects, algebras; Humphreys’ PBW theorem

4. Usual PBW theorem, more consequences

5. PBW proof

Note: I’ve taken the opportunity to discuss some categorical notions that aren’t
strictly necessary (e.g. representable functors, adjoints, associated graded alge-
bras, Serre spectral sequence).

Notation In this section, R is a commutative ring, F is an arbitrary field, L is
a Lie algebra over F (possibly infinite dimensional), V is an F-vector space with
ordered basis {v1, v2, . . .} (which need not be countable, despite the notation),
and tensor products are always as F-modules, so over F. Many statements are
true in much greater generality.

Definition An (associative unital) R-algebra A is:

1. An R-module

2. with a bilinear, associative product A×A→ A

3. with a two-sided identity 1.

It is graded if A = ⊕∞i=0A
i and the product is of the form Ai×Aj → Ai+j. Note

that R-algebra homomorphisms are F-linear, multiplicative, and send 1 to 1.

Comment Overview: a standard source of Lie algebras is by taking commu-
tators in an algebra. All Lie algebras at least inject into such an algebra, the
universal enveloping algebra U(L). Indeed, U(L) is roughly obtained by taking
formal products of elements of L modulo [x, y] = xy − yx. If L is abelian,
one expects U(L) to just be a polynomial ring (it is). The PBW theorem says
this is true in general at least on the level of F-modules, i.e. given an or-
dered basis {v1, v2, . . .} for L, U(L) has a basis of “monomials” vi1 · · · vi` where
i1 ≤ · · · ≤ i`. The bracket structure of L is hiding in the multiplicative structure
of U(L).

Why would you expect this? Any “monomial” vi1 · · · vin can be reordered at the
cost of introducing lower degree terms by replacing vivj with [vi, vj ]− vjvi. The
monomials thus span, though the hard part is showing they’re independent.
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First, a sample of the power of a PBW basis:

Corollary 110 The map L→ U(L) is injective.

Proof This map sends vi in L to the “monomial” vi in U(L), and by the PBW
theorem these vi are linearly independent. �

Comment Let A be an F-algebra. We have “natural” (i.e. functorial in A)
bijections

HomF-linear(V,A)↔ HomSets({v1, v2, . . .}, A)

↔ HomF-algebra(F〈v1, v2, . . .〉, A).

If A is commutative, we likewise have

HomF-linear(V,A)↔ HomSets({v1, v2, . . .}, A)

↔ Homcomm. F-algebra(F[v1, v2, . . .], A).

In both cases, we’ve identified a functor of the form HomC(C,−) : C→ Sets up
to natural isomorphism. This is called a representable functor. One version of
Yoneda’s lemma gives that any other object D satisfying these properties is itself
isomorphic to C. In this sense, we’ve found universal properties.

(Alternative explanation: these C are initial objects in a certain slice category,
so are unique up to suitably unique isomorphism.)

Definition Coordinate-free definitions for these spaces are common. Define:

T iV := V ⊗i (so T 0V := F)

TnV × TmV → Tn+mV : (v1 ⊗ · · · ⊗ vn) · (w1 ⊗ · · · ⊗ wm)

:= v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · ·wm
T(V ) := ⊕∞i=0T

iV

which makes T(V ) a graded F-algebra, the tensor algebra of V .

Note: any ring morphism Q→ R allows us to turn R-algebras into Q-algebras.
Since Z is the initial object in the category of rings, any R-algebra is a Z-algebra.
But a Z-algebra is precisely a ring. So R-algebras are rings.

Easy to see: T(V ) ∼= F〈v1, v2, . . .〉 (non-commutative) directly. Can also amplify
up the universal property of tensor products and apply Yoneda’s lemma as
above. Similarly:

Definition Let

I := two-sided ideal in T(V ) generated by x⊗ y − y ⊗ x
S(V ) := commutative, graded F-algebra T(V )/I

which gives the symmetric algebra S(V ). (Warning: graded-commutative differs
from commutative, graded.)
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We have S(V ) ∼= F[v1, v2, . . .].

Definition Let

J := two-sided ideal in U(L) generated by x⊗ y − y ⊗ x− [x, y]

U(L) := F-algebra T(V )/J

Note: J is typically not homogeneous, so U(L) is almost never graded. If L is
abelian, then J = I, so U(L) = S(L) ∼= F[v1, v2, . . .] as F-algebras. The PBW
basis is obvious in this case.

Comment The natural map i : L→ U(L) given by L = T(L)1 ↪→ T(L)� U(L)
is a Lie algebra homomorphism:

i([x, y]) = [x, y] = x⊗ y − y ⊗ x = xy − yx = i(x)i(y)− i(y)i(x) = [i(x), i(y)].

Given any algebra A, there is a bijection (functorial in A)

HomLie alg.(L,A)↔ HomF-algebra(U(L), A)

which is the universal property of U(L), again specifying it uniquely. Indeed,
this says that L 7→ U(L) is left adjoint to the functor sending an algebra to
its Lie algebra under the commutator. (One can prove this bijection from the
corresponding universal properties for T(L) and quotients.)

Comment There is a natural bijection

{L-modules} ↔ {U(L)-modules} .

Equivalently, there is a natural bijection

HomLie alg.(L, gl(V ))↔ HomF-algebra(U(L),End(V )).

In this sense representations of L are the same as representations of U(L).
(It’s actually an isomorphism between the categories of L-modules and U(L)-
modules.)

Next, we build up associated graded objects and algebras.

Definition Let A be an abelian category with A ∈ A; think the category of F-
algebras. (We essentially just want short exact sequences to make sense.) Given
a filtration

0 := F−1A ↪→ F0A ↪→ F1A ↪→ · · · ↪→ A,

the associated graded object is the sequence of cokernels (GiA := FiA/Fi−1A)∞i=0.
Assuming countable coproducts exist, these are often assembled into ⊕∞i=0G

iA
and sometimes are given further structure. These quotients are typically much
easier to deal with than A alone, yet they frequently contain important informa-
tion about A.
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Example Let FmT(L) := ⊕mi=0T
iL, which gives a filtration of T(L) (in the

category of F-modules). The graded pieces are just GmT(L) ∼= TmL. Assem-
bling these cokernels together yields the F-module ⊕∞i=0T

iL. It has a natural
multiplication corresponding to TnL × TmL → Tn+mL. Hence we’ve made an
associated graded algebra from T(L) and this filtration, which is just isomorphic
to T(L).

Example (The Serre spectral sequence) Start with a Serre fibration X →
B, with the goal of computing the integral singular cohomology H∗(X) of the
topological space X. One takes B to be a CW-complex, which comes with a
filtration by its n-skeleta. This filtration (eventually) induces a filtration on
each Hn(X).

In fact, one can recover the associated graded objects of these filtrations through
an involved process using the Serre spectral sequence. The very rough idea is
to create a “book” with pages 1, 2, . . . and groups at each lattice point Z2 in the
plane, together with “diagonals” which form chain complexes; this is a spectral
sequence. One “turns the page” by taking homology. In nice cases, the objects at
each fixed lattice point will “stabilize” in some finite number of pages, resulting
in the “E∞” page. Then the associated graded object of Hn(X) is formed by
looking at the nth antidiagonal on the E∞ page.

In practice, there are often many zeros in the first few pages and on the E∞

page, which allows one to not only recover the associated graded objects, but
potentially also identify Hn(X) on the nose in terms of the rest of the fibration
(e.g. there may be a single non-zero term on each antidiagonal on the E∞ page).

The associated graded algebra of a filtered algebra:

Definition A filtered F-algebra is an F-algebra A together with a sequence of
vector subspaces

0 =: F−1A ↪→ F0A ↪→ F1A ↪→ · · · ↪→ A

where ∪∞i=0FiA = A and FnA · FmA ⊂ Fn+mA.

Definition The associated graded algebra grA of a filtered algebra A is

• grA := ⊕∞i=0GiA = ⊕∞i=0FiA/Fi−1A as an F-module,

• with product given by FnA/Fn−1A × FmA/Fm−1A → Fn+mA/Fn+m−1A
induced by FnA× FmA→ Fn+mA, which is well-defined.

For instance, if a graded algebra is filtered by sums of its graded pieces, FnA :=
⊕ni=0Ai, then grA is naturally isomorphic to A as an algebra. In this sense,
grT(L) ∼= T(L) (as above) and grS(L) ∼= S(L).

Proposition 111 grA ∼= A as F-vector spaces, though unnaturally in general.
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Proof Successively pick complements so that FiA = Fi−1A ⊕ Hi (internal
direct sum). Then FiA = H0 ⊕ · · · ⊕Hi and FiA/Fi−1A ∼= Hi, so

⊕∞i=0FiA/Fi−1A = ⊕∞i=0Hi = ∪∞n=0 ⊕ni=0 Hi

= ∪∞n=0Fi = A.

Comment If A is a filtered algebra and φ : A � B is a surjective algebra
morphism, then F iB := φ(F iA) makes B a filtered algebra. In particular, if
I ⊂ A is an ideal, then A/I is filtered by F i(A/I) := (F iA + I)/I. (Easy
exercise.)

We’ll drop L from the notation now, so for instance U means U(L).

Definition Let

FnT := ⊕ni=0Ti = ⊕ni=0L
⊗i

FnS := Fn(T/I) = ⊕ni=0Si

FnU := Fn(T/J)

which is the filtration on T induced by its grading together with its induced
filtrations on the quotients S and U.

Intuitively, the nth term of each filtration arises by looking as the “polynomials
of degree at most n”, possibly modulo some relations. For instance, an element
is in FnU if and only if it can be lifted to an at most degree n polynomial
in T modulo J . (Minor note: Humphreys writes G(L) for grU(L) under this
filtration, though we’ll stick to grU.)

Since these filtrations on T and S are the natural ones induced by their gradings,
grT ∼= T and grS ∼= S as above. However, the structure of grU is much less
clear. One thing is obvious, though: grU is commutative. To see this, it suffices
to check the algebraic generating set v1, v2, . . ., which lives in G1U. But note
that in G2U, v1v2 − v2v1 = [v1v2] ∈ F1U = 0 ∈ G1U.

We have a natural map Tm ↪→ FmT� FmU� GmU which assembles to give a
natural map T→ grU.

Lemma 112 The natural map T→ grU is a surjective algebra homomorphism
with kernel containing I. Hence we have a natural surjection of algebras, S�
grU.

Proof That the map is a surjective algebra homomorphism is clear from how
it was defined. It must annihilate I since xy = yx in grU, so x⊗ y− y⊗x must
be in the kernel. �

Theorem 113 (PBW, Humphreys’ version) The natural map S → grU
is an isomorphism of algebras. More symmetrically, grS ∼= grU, or grT/I ∼=
grT/J . (Note that I is obtained from J by taking the “leading terms” of the
generators for J ; this point of view may be generalized.)
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We’ll prove this at the end. First, some consequences. Let π : T → U be the
natural projection.

Corollary 114 U ∼= F[v1, v2, . . .] as F-vector spaces.

Proof As vector spaces,

U ∼= grU ∼= S ∼= F[v1, v2, . . .].

The first isomorphism is unnatural, sadly, so the result is as well. The next
result is just a more explicit version of this one. �

Corollary 115 Suppose W is a subspace of Tm which is sent isomorphically
onto Sm under the quotient map T� S. Then FmU = Fm−1U⊕π(W ) (internal
direct sum) and π is injective on W . (Note: Humphreys seems to forget to note
that π is injective on W , though it’s implicit in his proofs.)

Proof Consider the diagram

FmU

Tm GmU

Sm
∼= GmS

0 on Fm−1Uπ

∼= on W ∼= by PBW

This is commutative. Following W through the bottom half of the diagram, it
is mapped isomorphically onto GmU. But then π(W ) is mapped isomorphically
onto FmU/Fm−1U under the quotient map FmU → FmU/Fm−1U, so Um =
Um−1 ⊕ π(W ). Further, π is injective on W since the bottom composite is an
isomorphism on W . �

Corollary 116 i : L→ U(L) is injective.

Proof Let W = T1 = L, and note that W = L = S1 yields the necessary
isomorphism. Hence π|L = i is injective on W = L. �

Corollary 117 (PBW Theorem, standard) Let (x1, x2, . . .) be an ordered
basis of L. Then the elements xi1 · · ·xim = π(xi1 ⊗ · · ·⊗xim) for m ∈ Z≥1 with
i1 ≤ · · · ≤ im, together with 1, form a basis for U(L), called a PBW basis.

Proof Let W be the subspace of Tm spanned by all such xi1 ⊗ · · · ⊗ xim .
Clearly W is mapped isomorphically onto Sm, so FmU = Fm−1U ⊕ π(W ) and
π is injective on W . The result follows inductively. �

Corollary 118 Let H be a subalgebra of L, and extend an ordered basis (h1, h2, . . .)
of H to an ordered basis (h1, . . . , x1, . . .) of L. Then the homomorphism U(H)→
U(L) induced by the injection H → L → U(L) is itself injective, and U(L) is a
free U(H)-module with free basis consisting of all xi1 · · ·xim with i1 ≤ · · · ≤ im,
along with 1.
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Proof The induced map U(H)→ U(L) sends hi1 · · ·him to itself, which sends
a basis to distinct basis elements. The U(H)-module structure just multiplies
on the left by elements of H, which shows that U(L) is a free U(H)-module with
the indicated basis. �

We finally turn to proving the PBW theorem.

Definition Let (xλ : λ ∈ Ω) be an ordered basis of L, so S(L) ∼= F[zλ : λ ∈ Ω].
For each sequence of indexes Σ = (λ1, . . . , λm), define

zΣ := zλ1
· · · zλm ∈ Sm

xΣ := xλ1
⊗ · · · ⊗ xλm ∈ Tm

λ ≤ Σ⇔ λ ≤ µ for all µ ∈ Σ

Call Σ increasing if λ1 ≤ · · · ≤ λm. Say Σ = ∅ is increasing and z∅ := 1 =: x∅.

Proposition 119 There exists a unique L-module structure on S(L) such that

xλ · zΣ = zλzΣ for λ ≤ Σ

xλ · zΣ ≡ zλzΣ (mod FmS) if Σ has length m.

Proof (It’s likely best to skip the proof and instead use the result as indicated
afterward, to motivate it.)

We define the action by inducting on the length of Σ; in the base case, x∅ = 1
acts as the identity. So, suppose L× FmS→ S has been defined with the two
properties above, and further suppose it’s an L-module action on L × FmS.
Explicitly, suppose

(Am) xλ · zΣ = zλzΣ for λ ≤ Σ, zΣ ∈ FmS;

(Bm) xλ · zΣ − zλzΣ ∈ FmS, zΣ ∈ FmS; and

(Cm) xλ · (xµ · zT )− xµ · (xλ · zT ) = [xλ, xµ] · zT for all zT ∈ Fm−1S.

Note that (Cm) requires (Bm) to make sense. To extend this to L×Fm+1S→ S,
we first impose (Am+1) with no trouble. To define xλ · zΣ when zΣ ∈ Fm+1S
and λ 6≤ Σ, we turn to Cm+1. In this case, take Σ = (µ, T ), where we must have
µ < λ, and T ∈ FmS. From Am we have xµ · zT = zΣ, and using Bm we can
write

xµ · (xλ · zT ) = xµ · (zλzT − y) = zµzλzT − xµ · y

for some y ∈ FmS, where Am+1 was applied in the second equality. Now (Cm+1)
becomes

xλ · zΣ = zλzΣ − xµ · y − [xλ, xµ] · zT ,

and each term on the right-hand side has already been defined. Hence we are
both forced and allowed to define L × Fm+1S → S on the remaining part of
L× Fm+1S by this equality.
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Written this way, it is evident that (Bm+1) is satisfied Moreover, we’ve declared
(Cm+1) to hold when µ < λ, µ ≤ T . Interchanging µ and λ in (Cm+1) negates
both sides of the equation, so (Cm+1) also holds when λ < µ, λ ≤ T . Further,
(Cm+1) is trivial when λ = µ. Hence it suffices to show (Cm+1) holds when
neither λ ≤ T nor µ ≤ T .

For that, write T = (ν, U), where ν ≤ U, λ, µ. Our goal is to apply the Jacobi
identity, which requires producing iterated commutators. We claim

xλ · xµ · zT = xν · xλ · xµ · zU + [xλ, xν ] · xµ · zU (*)

+ [xµ, xν ] · xλ · zU + [xλ, [xµ, xν ]] · zU .

We compute (where terms which will be manipulated to yield the next step are
put in parens)

xλ · xµ · (zT ) = xλ · (xµ · xν) · zU
= (xλ · xν) · xµ · zU + (xλ · [xµ, xν ]) · zU
= xν · xλ · xµ · zU + [xλ, xν ] · xµ · zU

+ [xµ, xν ] · xλ · zU + [xλ, [xµ, xν ]] · zU .

where we used (Am) on zT , (Cm) to commute xµ ·xν , then (Cm+1) to commute
xλ · xν and (Cm) to commute xλ · [xµ, xν ]. In showing that (Cm+1) applies to
commute xλ · xν in (xλ · xν) · xµ · zU , we must break xµ · zU into zµzU + w for
some w ∈ Fm−1S using (Bm−1). We then must apply (Cm) to xλ · xν · w and
(Cm+1) to xλ · xν · zµzU , which is valid since ν ≤ (µ,U); the result is as stated.

Finally, note that we may interchange λ and µ in (*) and subtract the two
resulting equations. The middle two terms cancel, leaving

xλ · xµ · zT − xµ · xλ · zT = xν · (xλ · xµ) · zU − xν · (xµ · xλ) · zU
+ [xλ, [xµ, xν ]] · zU − [xµ, [xλ, xν ]] · zU

= (xν · [xλ, xµ]) · zU − [xν , [xλ, xµ]] · zU
= [xλ, xµ] · xν · zU
= [xλ, xµ] · zT ,

where we rewrote the remaining terms, applied (Cm) to collapse two terms into
[xλ, xµ] along with the Jacobi identity to collapse the other two terms, applied
(Cm), and finally applied (Am). �

Lemma 120 The mth homogeneous component of any element of FmT∩J lies
in I.

Proof Suppose t ∈ FmT ∩ J has mth homogeneous component tm. Write
tm =

∑
cΣxΣ where Σ ranges over length m tuples and the cΣ are scalars. By

the Proposition, S(L) is an L-module, hence a U(L)-module, so also a T(L)-
module where J acts by 0. Hence t · 1 = 0 ∈ S(L). On the other hand, t · 1 is
a polynomial whose term of highest degree is

∑
cΣzΣ by property (b). Hence∑

cΣzΣ = 0, forcing
∑
cΣxΣ ∈ I, so tm ∈ I. �
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Proof (of Humphreys’ PBW theorem) Let t ∈ Tm. We must show that
π(t) ∈ Fm−1U implies t ∈ I. Now π maps Fm−1T onto Fm−1U, so there is some
t′ ∈ Fm−1T for which π(t) = π(t′), so t − t′ ∈ J . Now apply the preceding
lemma to t − t′ ∈ FmT ∩ J , which says that the homogeneous component of
degree m, namely t itself, is in I. �
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